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This Supplementary Material contains a summary of the basic termi-
nology and results for causal graphical models (Appendix A), additional
(unique) solvability properties (Appendix B), some results for linear SCMs
(Appendix C), other examples (Appendix D), the proofs of all the theoretical
results (Appendix E) and the measurable selection theorems (Appendix F)
that are used in several proofs.

APPENDIX A: CAUSAL GRAPHICAL MODELS

In this appendix, we provide a summary of the basic terminology and results for causal
graphical models. In Appendix A.1 we provide the terminology for directed (mixed) graphs.
In Appendix A.2 we give an introduction and an intuitive derivation of Markov properties
for SCMs with cycles. In Appendix A.3 we provide a definition of modular SCMs and show
how they relate to SCMs. In Appendix A.4 we provide an overview of the causal graphical
models related to SCMs. The proofs of the theoretical results in this appendix are given in
Appendix E.

A.1. Directed (mixed) graphs. In this subsection, we introduce the terminology for
directed (mixed) graphs, where we do allow for cycles [8, 15, 20, 23].

DEFINITION A.1 (Directed (mixed) graph).

1. A directed graph is a pair G = (V,E), where V is a set of nodes and E is a set of directed
edges, which is a subset E ⊆ V ×V of ordered pairs of nodes. Each element (i, j) ∈ E can
be represented by the directed edge i→ j or equivalently j← i. In particular, (i, i) ∈ E
represents a self-cycle i→ i.

2. A directed mixed graph is a triple G = (V,E ,B), where the pair (V,E) forms a directed
graph and B is a set of bidirected edges, which is a subset B ⊆ {{i, j} : i, j ∈ V, i 6= j}
of unordered (distinct) pairs of nodes. Each element {i, j} ∈ B can be represented by the
bidirected edge i↔ j or equivalently j↔ i. Note that a directed graph can be considered
as a directed mixed graph without bidirected edges.

3. Let G = (V,E ,B) be a directed mixed graph. A directed mixed graph G̃ = (Ṽ, Ẽ , B̃) is a
subgraph of G if Ṽ ⊆ V , Ẽ ⊆ E and B̃ ⊆ B, in which case we write G̃ ⊆ G. For a subset
W ⊆V , we define the induced subgraph of G onW by GW := (W, Ẽ , B̃), where Ẽ and B̃
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are the set of directed and bidirected edges in E and B, respectively, that lie in W ×W
and {{i, j} : i, j ∈W, i 6= j}, respectively.

4. A walk between i, j ∈ V in a directed mixed graph G is a tuple (i0, ε1, i1, ε2, i2, . . . , εn, in)
of alternating nodes and edges in G for some n ≥ 0, where all i0, . . . , in ∈ V , all
ε1, . . . , εn ∈ E ∪ B such that εk ∈ {ik−1→ ik, ik−1← ik, ik−1↔ ik} for all k = 1, . . . , n,
and it starts with node i0 = i and ends with node in = j. Note that n= 0 corresponds with
a trivial walk consisting of a single node. If all nodes i0, . . . , in are distinct, it is called a
path. A walk (path) of the form i→ · · · → j, that is, εk is ik−1→ ik for all k = 1,2, . . . , n,
is called a directed walk (path) from i to j.

5. A cycle through i ∈ V in a directed mixed graph G is a directed path from i to some node
j extended with the edge j→ i ∈ E . In particular, a self-cycle i→ i ∈ E is a cycle. Note
that a path cannot contain any cycles. A directed graph and a directed mixed graph are
said to be acyclic if they contain no cycles, and are then referred to as a directed acyclic
graph (DAG) and an acyclic directed mixed graph (ADMG), respectively.

6. For a directed mixed graph G and a node i ∈ V we define the set of parents of i by
paG(i) := {j ∈ V : j→ i ∈ E}, the set of children of i by chG(i) := {j ∈ V : i→ j ∈ E},
the set of ancestors of i by

anG(i) := {j ∈ V : there is a directed path from j to i in G}

and the set of descendants of i by

deG(i) := {j ∈ V : there is a directed path from i to j in G} .

Note that we have {i} ∪ paG(i) ⊆ anG(i) and {i} ∪ chG(i) ⊆ deG(i). We can apply all
these definitions to subsets U ⊆ V by taking unions, for example paG(U) := ∪i∈UpaG(i).
A subset A ⊆ V is called an ancestral subset in G if A = anG(A), that is, A is closed
under taking ancestors of A in G.

7. Let G = (V,E ,B) be a directed mixed graph. We call G strongly connected if for every
pair of distinct nodes i, j ∈ V , the graph contains a cycle that passes through both i and
j. The strongly connected component of i ∈ V , denoted by scG(i), is the maximal subset
S ⊆ V such that i ∈ S and the induced subgraph GS is strongly connected. Equivalently,
scG(i) = anG(i)∩ deG(i).

8. A loop in a directed mixed graph G = (V,E ,B) is a subset O ⊆ V that is strongly con-
nected in the induced subgraph GO of G on O.

9. For a directed graph G = (V,E), we define the graph of strongly connected components
of G as the directed graph Gsc := (Vsc,Esc), where Vsc are the strongly connected compo-
nents of G, that is, Vsc are the equivalence classes in V/∼ with the equivalence relation
i ∼ j if and only if i ∈ scG(j), and Esc = (E \ {i→ i : i ∈ V})/∼ with the equivalence
relation (i→ j)∼ (i′→ j′) if and only if i∼ i′ and j ∼ j′.

We omit the subscript G whenever it is clear which directed (mixed) graph G we are refer-
ring to.

LEMMA A.2 (DAG of strongly connected components). Let G = (V,E) be a directed
graph. Then Gsc, the graph of strongly connected components of G, is a DAG.

A.2. Markov properties. In this subsection, we give a short overview of Markov prop-
erties for SCMs with cycles. We will make use of the Markov properties that were recently
developed by Forré and Mooij [8] for HEDGes, a graphical representation that is similar to
the augmented graph of SCMs. We briefly summarize some of their main results and apply
them to the class of SCMs. We also provide a shorter and more intuitive derivation so that
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this subsection can act as an entry point for the reader into the more extensive discussion of
Markov properties provided in [8].

Markov properties associate a set of conditional independence relations to a graph. The
directed global Markov property for directed acyclic graphs, also known as the d-separation
criterion [19], is one of the most widely used. It directly extends to a similar property for
acyclic directed mixed graphs (ADMGs) [23]. It does not hold in general for cyclic SCMs,
however, as was already observed earlier [26, 27]. Under some conditions (roughly speaking,
linearity or discrete variables) the directed global Markov property can be shown to hold also
in the presence of cycles [8].

Inspired by work of Spirtes [26], Forré and Mooij [8] recognized that in the general cyclic
case a different extension of d-separation, termed σ-separation, is needed, leading to the gen-
eral directed global Markov property. One key result in [8] implies that under the assumption
of unique solvability w.r.t. each strongly connected component of its graph, the observa-
tional distribution of an SCM satisfies the general directed global Markov property w.r.t. its
graph. The solvability assumptions are in general not preserved under interventions. Under
the stronger assumption of simplicity, however, they are, and one obtains the corollary that
also all interventional and counterfactual distributions of a simple SCM satisfy the general
directed global Markov property w.r.t. to their corresponding graphs.

For a more extensive study of different Markov properties that can be associated to SCMs
we refer the reader to [8].

A.2.1. The directed global Markov property. Conditional independencies in the observa-
tional distribution of an acyclic SCM can be read off from its graph by using the graphical cri-
terion called d-separation [20]. The directed global Markov property associates a conditional
independence relation in the observational distribution of the SCM to each d-separation en-
tailed by the graph. Here, we use a formulation of d-separation that generalizes d-separation
for DAGs [19] and m-separation for ADMGs [23] and mDAGs [7].

DEFINITION A.3 (Collider). Let π = (i0, ε1, i1, ε2, i2, . . . , εn, in) be a walk (path) in a
directed mixed graph G = (V,E ,B). A node ik on π is called a collider on π if it is a
non-endpoint node (1 ≤ k < n) and the two edges εk, εk+1 meet head-to-head on ik (i.e.,
if the subwalk (ik−1, εk, ik, εk+1, ik+1) is of the form ik−1→ ik← ik+1, ik−1↔ ik← ik+1,
ik−1→ ik↔ ik+1 or ik−1↔ ik↔ ik+1). The node ik is called a non-collider on π otherwise,
that is, if it is an endpoint node (k = 0 or k = n) or if the subwalk (ik−1, εk, ik, εk+1, ik+1) is
of the form ik−1→ ik→ ik+1, ik−1← ik← ik+1, ik−1← ik→ ik+1, ik−1↔ ik→ ik+1 or
ik−1← ik↔ ik+1.

Note in particular that the end points of a walk are non-colliders on the walk.

DEFINITION A.4 (d-separation). Let G = (V,E ,B) be a directed mixed graph and let
C ⊆ V be a subset of nodes. A walk (path) π = (i0, ε1, i1, . . . , in) in G is said to be C-d-
blocked or d-blocked by C if

1. it contains a collider ik /∈ anG(C), or
2. it contains a non-collider ik ∈C .

The walk (path) π is said to be C-d-open if it is not d-blocked by C . For two subsets of nodes
A,B ⊆ V , we say that A is d-separated from B given C in G if all paths between any node
in A and any node in B are d-blocked by C , and write

A
d
⊥
G
B |C .
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X1 X2

X3 X4

X1 X2

X3 X4

Fig 1: The graphs of the observationally equivalent SCMsM (left) and M̃ (right) of Example A.8 and A.10.

The next lemma is a straightforward generalization of Lemma 3.3 in [9] to the cyclic
setting. It implies that it suffices to formulate d-separation in terms of paths rather than walks.

LEMMA A.5. Let G = (V,E ,B) be a directed mixed graph, C ⊆ V and i, j ∈ V . There
exists a C-d-open walk between i and j in G if and only if there exists a C-d-open path
between i and j in G.

DEFINITION A.6 (Directed global Markov property). Let G = (V,E ,B) be a directed
mixed graph and PV a probability distribution on X V =

∏
i∈V Xi, where each Xi is a stan-

dard probability space. The probability distribution PV satisfies the directed global Markov
property relative to G if for all subsets A,B,C ⊆V we have

A
d
⊥
G
B |C =⇒ XA ⊥⊥

PV
XB |XC ,

that is, (Xi)i∈A and (Xi)i∈B are conditionally independent given (Xi)i∈C under PV , where
we take the canonical projections Xi : X V →Xi as random variables.

From the results in [8] it directly follows that for the observational distribution of an
SCM, the directed global Markov property w.r.t. the graph of the SCM (also known as the
d-separation criterion), holds under one of the following assumptions.

THEOREM A.7 (Directed global Markov property for SCMs [8]). LetM be a uniquely
solvable SCM that satisfies at least one of the following three conditions:

1. M is acyclic;
2. all endogenous spaces Xi are discrete andM is ancestrally uniquely solvable;
3. M is linear (see Definition C.1), each of its causal mechanisms {fi}i∈I has a nontrivial

dependence on at least one exogenous variable, and PE has a density w.r.t. the Lebesgue
measure on RJ .

Then its observational distribution PX exists, is unique and satisfies the directed global
Markov property relative to G(M) (see Definition A.6).

The acyclic case is well known and was first shown in the context of linear-Gaussian struc-
tural equation models [14, 29]. The discrete case fixes the erroneous theorem by Pearl and
Dechter [21], for which a counterexample was found by Neal [18], by adding the ancestral
unique solvability condition, and extends it to allow for bidirected edges in the graph. The
linear case is an extension of existing results for the linear-Gaussian setting without bidi-
rected edges [13, 26, 27] to a linear (possibly non-Gaussian) setting with bidirected edges in
the graph.

The following counterexample of an SCM for which the directed global Markov property
does not hold was already given in [26, 27].
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EXAMPLE A.8 (Directed global Markov property does not hold for cyclic SCM). Con-
sider the SCMM= 〈4,4,R4,R4,f ,PR4〉 with causal mechanism given by

f1(x,e) = e1 , f2(x,e) = e2 , f3(x,e) = x1x4 + e3 , f4(x,e) = x2x3 + e4

and PR4 is the standard-normal distribution on R4. The graph ofM is depicted in Figure 1
on the left. The model is uniquely solvable (it is even simple). One can check that for every
solution X of M, X1 is not independent of X2 given {X3,X4}. However, the variables
X1 and X2 are d-separated given {X3,X4} in G(M). Hence the global directed Markov
property does not hold here.

In constraint-based approaches to causal discovery, one usually assumes the converse of
the directed global Markov property to hold [20, 28].

DEFINITION A.9 (d-Faithfulness). Let G = (V,E ,B) be a directed mixed graph and PV
a probability distribution on X V =

∏
i∈V Xi, where each Xi is a standard probability space.

The probability distribution PV is d-faithful to G if for all subsets A,B,C ⊆V we have

A
d
⊥
G
B |C ⇐= XA ⊥⊥

PV
XB |XC ,

where we take the canonical projections Xi : X V →Xi as random variables.

In other words, the d-faithfulness assumption states that the graph explains, via d-
separation, all the conditional independencies that are present in the observational distri-
bution. Meek [17] showed that for multinomial and linear-Gaussian DAG (i.e., acyclic and
causally sufficient SCMs) models, d-faithfulness holds for all parameter values up to a mea-
sure zero set (in a natural parameterization). Up to our knowledge no such results have been
shown in more general parametric or nonparametric settings (neither in the acyclic case, nor
in the cyclic one).

A.2.2. The general directed global Markov property. In [8] the general directed global
Markov property is introduced, that is based on σ-separation, an extension of d-separation.
This notion of σ-separation was derived from the notion of d-separation in the acyclification
of the graph. The acyclification of a graph generalizes the idea of the collapsed graph for
directed graphs, developed by Spirtes [26], to HEDGes. In particular, this notion can be
applied to directed mixed graphs, and thus to the graphs of SCMs. The main idea of the
acyclification is that under the condition that the SCM is uniquely solvable w.r.t. each strongly
connected component, we can replace the causal mechanisms of these strongly connected
components by their measurable solution functions, which results in an acyclic SCM. This
acyclification preserves the solutions, and d-separation in the acyclification can directly be
translated into σ-separation in the original graph. This then leads to the general directed
global Markov property. We will discuss this now in more detail.

EXAMPLE A.10 (Construction of an observationally equivalent acyclic SCM). Consider
the SCMM of Example A.8 which is uniquely solvable w.r.t. all its strongly connected com-
ponents, i.e., the subsets {1}, {2} and {3,4}. Replacing the causal mechanisms of these
strongly connected components by their measurable solution functions gives the SCM M̃
that is the same asM except that its causal mechanism f̃ is given by

f̃1(x,e) := e1, f̃2(x,e) := e2, f̃3(x,e) := x1e4+e3
1−x1x2

, f̃4(x,e) := x2e3+e4
1−x1x2

.

By construction,M and M̃ are observationally equivalent. Because M̃ is acyclic (see Fig-
ure 1 on the right) we can apply the directed global Markov property to M̃. The fact that X1

and X2 are not d-separated given {X3,X4} in G(M̃) is in line with X1 being dependent of
X2 given {X3,X4} for every solution X of M̃ (and hence ofM).
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One of the key insights in [8] is that this example can easily be generalized as follows.

DEFINITION A.11 (Acyclification of an SCM). Let M = 〈I,J ,X ,E,f ,PE〉 be an
SCM that is uniquely solvable w.r.t. each strongly connected component of G(M). For each
i ∈ I , let gi be the ith component of a measurable solution function gsc(i) : X pa(sc(i))\sc(i) ×
Epa(sc(i)) → X sc(i) of M w.r.t. sc(i), where pa and sc denote the parents and strongly
connected components according to Ga(M), respectively. We call the SCM Macy :=

〈I,J ,X ,E, f̂ ,PE〉 with the acyclified causal mechanism f̂ : X × E→X given by

f̂i(x,e) = gi(xpa(sc(i))\sc(i),epa(sc(i))) , i ∈ I ,

an acyclification ofM. We denote by acy(M) the equivalence class of the acyclifications of
M.

Note that acy(M) is well-defined: all acyclifications of an SCM M belong to the same
equivalence class of SCMs.

PROPOSITION A.12. Let M be an SCM that is uniquely solvable w.r.t. each strongly
connected component of G(M). Then an acyclificationMacy ofM is acyclic and observa-
tionally equivalent toM.

We can also define a graphical acyclification for directed mixed graphs, which is a special
case of the operation defined in [8] for HEDGes.

DEFINITION A.13 (Acyclification of a directed mixed graph). Let G = (V,E ,B) be a di-
rected mixed graph. The acyclification of G maps G to the acyclified graph Gacy := (V, Ê , B̂)

with directed edges j → i ∈ Ê if and only if j ∈ paG(scG(i)) \ scG(i) and bidirected edges
i↔ j ∈ B̂ if and only if there exist i′ ∈ scG(i) and j′ ∈ scG(j) with i′ = j′ or i′↔ j′ ∈ B.

The following compatibility result is immediate from the definitions.

PROPOSITION A.14. Let M be an SCM that is uniquely solvable w.r.t. each strongly
connected component of G(M). Then Ga(acy(M)) ⊆ acy(Ga(M)) and G(acy(M)) ⊆
acy(G(M)).

The following example illustrates that the graph of the acyclification of an SCM can be a
strict subgraph of the acyclification of the graph of the SCM.

EXAMPLE A.15 (Graph of the acyclification of the SCM is a strict subgraph of the acycli-
fication of its graph). Consider the SCMM= 〈2,1,R2,R,f ,PR〉 with the causal mecha-
nism defined by

f1(x, e) = x2 − e , f2(x, e) = 1
2x1 + e

and PR the standard Gaussian measure on R. The SCM M is uniquely solvable w.r.t. the
(only) strongly connected component {1,2}. An acyclification of M is the acyclified SCM
Macy with the acyclified causal mechanism f̂ defined by

f̂1(x, e) = 0 , f̂2(x, e) = e .

The graph G(acy(M)) is a strict subgraph of acy(G(M)) as can be seen in Figure 2.
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X1 X2

G(M)

X1 X2

G(acy(M))

X1 X2

acy(G(M))

Fig 2: The graphs of the original SCMM (left), of the acyclified SCM (center), and of the acyclification of the graph ofM
(right) corresponding to Example A.15.

Translating the notion of d-separation from the acyclified graph back to the original graph
led to the notion of σ-separation.

DEFINITION A.16 (σ-separation [8]). Let G = (V,E ,B) be a directed mixed graph and
let C ⊆ V be a subset of nodes. A walk (path) π = (i0, ε1, i1, . . . , in) in G is said to be C-σ-
blocked or σ-blocked by C if

1. its first node i0 ∈C or its last node in ∈C , or
2. it contains a collider ik /∈ anG(C), or
3. it contains a non-endpoint non-collider ik ∈C that points towards a neighboring node on
π that lies in a different strongly connected component of G, that is, such that ik−1← ik
in π and ik−1 /∈ scG(ik), or ik→ ik+1 in π and ik+1 /∈ scG(ik).

The walk (path) π is said to be C-σ-open if it is not σ-blocked by C . For two subsets of nodes
A,B ⊆ V , we say that A is σ-separated from B given C in G if all paths between any node
in A and any node in B are σ-blocked by C , and write

A
σ
⊥
G
B |C .

The only difference between σ-separation and d-separation is that d-separation does not
have the extra condition on the non-collider that it has to point to a node in a different strongly
connected component. It is therefore obvious that σ-separation reduces to d-separation for
acyclic graphs, since scG(i) = {i} for each i ∈ V in that case.

Although for proofs it is often easier to make use of walks, it suffices to formulate σ-
separation in term of paths rather than walks because of the following result, which is analo-
gous to a similar result for d-separation (see Lemma A.5).

LEMMA A.17. Let G = (V,E ,B) be a directed mixed graph, C ⊆ V and i, j ∈ V . There
exists a C-σ-open walk between i and j in G if and only if there exists a C-σ-open path
between i and j in G.

It is clear from the definitions that σ-separation implies d-separation. The other way
around does not hold in general, as can be seen in the following example.

EXAMPLE A.18 (d-separation does not imply σ-separation). Consider the directed
graph G as depicted in Figure 1 (left). Here X1 is d-separated from X2 given {X3,X4},
but X1 is not σ-separated from X2 given {X3,X4}.

The following result in [8] relates σ-separation to d-separation.

PROPOSITION A.19. Let G = (V,E ,B) be a directed mixed graph. Then for A,B,C ⊆
V ,

A
σ
⊥
G
B |C ⇐⇒ A

d
⊥

acy(G)
B |C .
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By replacing in Definition A.6 “d-separation” by “σ-separation”, one obtains the formu-
lation of what Forré and Mooij [8] termed the general directed global Markov property.

DEFINITION A.20 (General directed global Markov property [8]). Let G = (V,E ,B) be
a directed mixed graph and PV a probability distribution on X V =

∏
i∈V Xi, where each Xi

is a standard probability space. The probability distribution PV satisfies the general directed
global Markov property relative to G if for all subsets A,B,C ⊆V we have

A
σ
⊥
G
B |C =⇒ XA ⊥⊥

PV
XB |XC ,

that is, (Xi)i∈A and (Xi)i∈B are conditionally independent given (Xi)i∈C under PV , where
we take the canonical projections Xi : X V →Xi as random variables.

The fact that σ-separation implies d-separation means that the directed global Markov
property implies the general directed global Markov property. In other words, the general
directed global Markov property is weaker than the directed global Markov property. It is
actually strictly weaker, as we saw in Example A.18.

The following fundamental result, also known as the σ-separation criterion, follows di-
rectly from the theory in [8].

THEOREM A.21 (General directed global Markov property for SCMs). Let M be an
SCM that is uniquely solvable w.r.t. each strongly connected component of G(M). Then its
observational distribution PX exists, is unique and it satisfies the general directed global
Markov property relative to G(M).1

The proof is based on the reasoning that, forA,B,C ⊆ I , ifA is σ-separated fromB given
C in G(M), thenA is d-separated fromB byC in acy(G(M)) and hence in G(acy(M)), and
since acy(M) is acyclic and observationally equivalent to M, it follows from the directed
global Markov property applied to acy(M) thatXA ⊥⊥ PX XB |XC for every solutionX of
M. Note that the ancestral unique solvability condition for the discrete case is strictly weaker
than the condition of unique solvability w.r.t. each strongly connected component in Theo-
rem A.21. For the linear case, the condition of unique solvability is equivalent to the condition
of unique solvability w.r.t. each strongly connected component (see Proposition C.4).

The results in Theorems A.7 and A.21 are not preserved under perfect intervention, be-
cause intervening on a strongly connected component could split it into several strongly
connected components with different solvability properties. As the class of simple SCMs
is preserved under perfect intervention and the twin operation (Proposition 8.2), we obtain
the following corollary.

COROLLARY A.22 (Global Markov properties for simple SCMs). Let M be a simple
SCM. Then the:

1. observational distribution,

1Since [8] also provides results under the weaker condition that an SCM is solvable (not necessarily uniquely)
w.r.t. each strongly connected component of G(M), one might believe that Theorem A.21 could be generalized
to stating that in that case, any of its observational distributions satisfies the general directed global Markov
property. However, that is not true: consider for example the SCM M = 〈2,∅,R2,1,f ,P1〉 with f1(x) = x1
and f2(x) = x2. ThenM is solvable w.r.t. each of its strongly connected components {1} and {2}. The solution
withX1 =X2 shows a dependence betweenX1 andX2 and thusX1⊥⊥X2 does not hold. In general, all strongly
connected components that admit multiple solutions may be dependent on any other variable(s) in the model.
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2. interventional distribution after perfect intervention on I ⊂ I ,
3. counterfactual distribution after perfect intervention on Ĩ ⊆ I ∪ I ′,

all exist, are unique and satisfy the general directed global Markov property relative to
G(M), do(I)(G(M)) and do(Ĩ)(twin(G(M))), respectively. Moreover, if M satisfies at
least one of the three conditions (1), (2), (3) of Theorem A.7, then they also satisfies the di-
rected global Markov property relative to G(M), do(I)(G(M)) and do(Ĩ)(twin(G(M))),
respectively.

Similar to d-faithfulness, σ-faithfulness2 is defined as follows.

DEFINITION A.23 (σ-Faithfulness). Let G = (V,E ,B) be a directed mixed graph and PV
a probability distribution on X V =

∏
i∈V Xi, where each Xi is a standard probability space.

The probability distribution PV is σ-faithful to G if for all subsets A,B,C ⊆V we have

A
σ
⊥
G
B |C ⇐= XA ⊥⊥

PV
XB |XC ,

where we take the canonical projections Xi : X V →Xi as random variables.

In other words, the graph explains, via σ-separation, all the conditional independencies
that are present in the observational distribution. Although it has been conjectured [27] that
under certain conditions σ-faithfulness should hold, formulating and proving such complete-
ness results is an open problem to the best of our knowledge.

A.3. Modular SCMs. In this subsection, we relate the class of (simple) SCMs to that
of modular SCMs. Modular SCMs introduced by Forré and Mooij [8] are causal graphical
models on which marginalizations and interventions are defined and they satisfy the general
directed global Markov property. For a comprehensive account on modular SCMs we refer
the reader to [8].

A.3.1. Definition of a modular SCM. In contrast to an SCM from which a graph can be
derived, a modular SCM is defined in terms of a graphical object, which Forré and Mooij [8]
call a directed graph with hyperedges (HEDG). The hyperedges of a HEDG are described in
terms of a simplicial complex.

DEFINITION A.24 (Simplicial complex). Let V be a finite set. A simplicial complex H
over V is a set of subsets of V such that

1. all single element sets {v} are in H for v ∈ V , and
2. if F ∈H, then also all subsets F̃ ⊆ F are elements of H.

DEFINITION A.25 (Directed graph with hyperedges (HEDGes) [8]). A directed graph
with hyperedges (HEDG) is a triple G = (V,E ,H), where (V,E) is a directed graph and H
a simplicial complex over the set of nodes V . The elements F of H are called hyperedges
of G. The elements F of H that are inclusion-maximal elements of H are called maximal
hyperedges and are denoted by Ĥ.

2In [24] it is called “collapsed graph faithfulness”.
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A HEDG G = (V,E ,H) can be represented as a directed graph Ḡ := (V,E) consisting of
nodes V and directed edges E , with additional maximal hyperedges F ∈ Ĥ with |F| ≥ 2 (i.e.,
not corresponding to single element sets {v} ∈ Ĥ), that point to their target nodes v ∈ F . For
a HEDG G, we define paG , chG , etc., in terms of the underlying directed graph Ḡ, that is,
paḠ , chḠ , etc., respectively.

A loop in a HEDG G = (V,E ,H) is a subsetO⊆V that is a loop in the underlying directed
graph Ḡ = (V,E). In other words, a loop of G is a set of nodes O ⊆ V such that for every
two nodes v,w ∈ O there are directed paths v→ · · · → w and w→ · · · → v in G for which
all the intermediate nodes lie in O (if any exist). In particular, a loop may consist of a single
element {v} for v ∈ V . The set of loops in G is denoted by L(G).

In order to define a modular SCM one needs the notion of a compatible system of solution
functions, which assigns to each loop a separate solution function such that all these solution
functions are “compatible” with each other.

DEFINITION A.26 (Compatible system of solution functions3). Let G = (V,E ,H) be
a HEDG. For every v ∈ V and maximal hyperedge F in Ĥ, let Xv and EF be standard
measurable spaces. For a subset O⊆V we define4

XO :=
∏
v∈O
Xv and ÊO :=

∏
F∈Ĥ
F∩O6=∅

EF .

Consider a family of measurable mappings (gO)O∈L(G) indexed by L(G) which are of the
form

gO : X paG(O)\O × ÊO→XO .

We call the family of measurable mappings (gO)O∈L(G) a compatible system of solution
functions, if for all O, Õ ∈ L(G) with Õ ⊆ O and for all êO ∈ ÊO and xpaG(O)∪O ∈
X paG(O)∪O we have

xO = gO(xpaG(O)\O, êO) =⇒ xÕ = gÕ(xpaG(Õ)\Õ, êÕ) .

This structure of a compatible system of solution functions is at the heart of the defnition
of a modular SCM.

DEFINITION A.27 (Modular structural causal model (mSCM) [8]). A modular structural
causal model (mSCM) is a tuple

M̂ := 〈G,X ,E, (gO)O∈L(G),PE〉 ,

where

1. G = (V,E ,H) is a HEDG,
2. X =

∏
v∈V Xv is the product of standard measurable spaces Xv ,

3. E =
∏
F∈Ĥ EF is the product of standard measurable spaces EF ,

4. (gO)O∈L(G) is a compatible system of solution functions,
5. PE =

∏
F∈Ĥ PEF is a product measure, where PEF is a probability measure on EF for

each F ∈ Ĥ.

3We deviate from the terminology in [8] where this is called a “compatible system of structural equations”.
4We use the “hat” notation ÊO to distinguish it from the ordinary subscript convention that EO =

∏
F∈O EF

for some subset O ⊆ Ĥ.
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Let M̂ = 〈G,X ,E, (gO)O∈L(G),PE〉 be a modular SCM and O1, . . . ,Or ∈ L(G) the
strongly connected components of G ordered according to a topological order of the DAG
of strongly connected components of G. Then for any random variable E : Ω→ E such that
PE = PE one can inductively define the random variables Xv := (gOi)v(XpaG(Oi)\Oi , ÊOi)

for all v ∈ Oi for all i ≥ 1, starting at Xv := (gO1
)v(ÊO1

) for all v ∈ O1. Because
(gO)O∈L(G) is a compatible system of solution functions, we have for every O ∈L(G)

XO = gO(XpaG(O)\O, ÊO) .

We call the random variableX a solution of the modular SCM M̂. Note that the solutionX
depends on the choice of the random variable E : Ω→ E .

The causal semantics of modular SCMs can be defined in terms of perfect interventions,
which is defined as follows.

DEFINITION A.28 (Perfect intervention on an mSCM). Consider a modular SCM M̂=
〈G,X ,E, (gO)O∈L(G),PE〉, a subset I ⊆ V of endogenous variables and a value ξI ∈ X I .
The perfect intervention do(I,ξI) maps M̂ to the modular SCM

M̂do(I,ξI) := 〈Gdo,X ,Edo, (gdo
O )O∈L(Gdo),PEdo〉 ,

where

1. Gdo = (V,Edo,Hdo), where

Edo = E \ {v→w : v ∈ V,w ∈ I}

Hdo = {F \ I : F ∈H}∪ {{v} : v ∈ I} ,

2. φ : {F ∈ Ĥ : F \ I 6= ∅}→ Ĥdo \ {{v} : v ∈ I} is a mapping such that φ(F)⊇F \ I for
all F ∈ Ĥ for which F \ I 6= ∅,

3. Edo =
∏
F̃∈Ĥdo Edo

F̃ , where

Edo
F̃ =

{
Xv if F̃ = {v} for v ∈ I∏
F=φ−1(F̃) EF if F̃ ∈ Ĥdo \ {{v} : v ∈ I} ,

4. for every O ∈L(Gdo)

gdo
O =

{
I{v} if O = {v} for v ∈ I
gO otherwise,

(note that if O is a loop in Gdo, then it is a loop in G),
5. PEdo =

∏
F̃∈Ĥdo PEdo

F̃
, where

PEdo
F̃

=

{
δξv if F̃ = {v} for v ∈ I∏
F=φ−1(F̃) PEF if F̃ ∈ Ĥdo \ {{v} : v ∈ I} .

In contrast to SCMs, these perfect interventions on modular SCMs are directly defined on
the underlying HEDG and depend on the choice of the mapping φ.
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A.3.2. Relation between SCMs and modular SCMs. The solutions of a modular SCM
can be described by an SCM that is loop-wisely solvable.

DEFINITION A.29 (Underlying SCM). Let M̂ = 〈G,X ,E, (gO)O∈L(G),PE〉 be a mod-
ular SCM. Then the mapping ι maps M̂ to the underlying SCM M̃ := 〈Ĩ, J̃ , X̃ , Ẽ, f̃ ,PẼ〉,
where

1. Ĩ = V ,
2. J̃ = Ĥ,
3. X̃ = X ,
4. Ẽ = E ,
5. f̃ is given by f̃v = (g{v})v for all v ∈ V ,
6. PẼ = PE .

Every solution X of a modular SCM M̂ is also a solution of the underlying SCM ι(M̂).
Observe that for the modular SCM M̂ we have that the induced subgraph Ga(ι(M̂))Ĩ , of

the augmented graph of the underlying SCM Ga(ι(M̂)) on Ĩ , is a subgraph of the underlying
HEDG G, that is, Ga(ι(M̂))Ĩ ⊆ G. This implies that, in general, the underlying HEDG G of
M̂ may have more loops than the loops in G(ι(M̂)). For a subset O ⊆ Ĩ , we have for the
exogenous parents of the underlying SCM ι(M̂)

pa(O)∩ J̃ ⊆ {F ∈ J̃ : F ∩O 6= ∅} ,

where pa(O) denotes the set of parents of O in Ga(ι(M̂)). Hence, in general, not all the
hyperedges F ∈H such that |F|= 2 (i.e., bidirected edges) are in the set of bidirected edges
B of the graph of the underlying SCM G(ι(M̂)) = (V,E ,B). We conclude that the graph of
the underlying SCM is, in general, a sparser graph than the HEDG of the modular SCM.

Next, we show that the compatible system of solution functions of a modular SCM induces
a compatible system of solution functions on the underlying SCM. For this we need the notion
of loop-wise solvability for SCMs.

DEFINITION A.30 (Loop-wise (unique) solvability for SCMs). We call an SCMM

1. loop-wisely solvable, ifM is solvable w.r.t. every loop O ∈L(G(M)), and
2. loop-wisely uniquely solvable, ifM is uniquely solvable w.r.t. every loop O ∈L(G(M)).

DEFINITION A.31 (Compatible system of solution functions for SCMs). For a loop-
wisely solvable SCMM, we call a family of measurable solution functions (gO)O∈L(G(M)),
where gO is a measurable solution function ofM w.r.t. O, a compatible system of solution
functions, if for all O, Õ ∈ L(G(M)) with Õ ⊆ O and for PE -almost every e ∈ E and for all
x ∈X we have

xO = gO(xpa(O)\O,epa(O)) =⇒ xÕ = gÕ(xpa(Õ)\Õ,epa(Õ)) .

The underlying SCM of a modular SCM always has a compatible system of solution func-
tions, by construction.

PROPOSITION A.32. Let M̂= 〈G,X ,E, (gO)O∈L(G),PE〉 be a modular SCM. Then the
underlying SCM M̃ := ι(M̂) is loop-wisely solvable. Moreover, it has a compatible system
of solution functions (gO)O∈L(G(M̃)), where gO is a measurable solution function of M̃ w.r.t.
O.
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Fig 3: Overview of causal graphical models. The “gray” and “dark gray” areas contain all the causal graphical models that can
be modeled by an SCM and an acyclic SCM, respectively.

This shows that a modular SCM can be seen as an SCM together with an additional struc-
ture of a compatible system of solution functions, and is, in particular, loop-wisely solvable.

Moreover, the class of simple SCMs corresponds exactly with those SCMs that are loop-
wisely uniquely solvable.

LEMMA A.33. An SCMM is simple if and only if it is loop-wisely uniquely solvable.

In particular, for simple SCMs, or loop-wisely uniquely solvable SCMs, there always ex-
ists a compatible system of solution functions.

PROPOSITION A.34. LetM= 〈I,J ,X ,E,f ,PE〉 be a simple SCM. Then every family
of measurable solution functions (gO)O∈L(G(M)), where gO is a measurable solution func-
tion ofM w.r.t. O, is a compatible system of solution functions.

A.4. Overview of causal graphical models. Figure 3 gives an overview of the causal
graphical models related to SCMs. The “gray” area contains all the causal graphical models
that can be modeled by an SCM, by which we mean, that there exists an SCM that can de-
scribe all its observational and interventional distributions. The “dark gray” area contains all
the causal graphical models which can be modeled by an acyclic SCM. Acyclic SCMs gen-
eralize causal Bayesian networks (causal BNs) [20] to allow for latent confounders and to
derive counterfactuals. Simple SCMs form a subclass of SCMs that extends acyclic SCMs to
the cyclic setting, while preserving many of their convenient properties. Modular SCMs [8]
can be seen as SCMs that have an additional structure of compatible system of solution func-
tions and contain, in particular, the class of simple SCMs. Forré and Mooij [8] showed that
modular SCMs satisfy various convenient properties, like marginalization and the general
directed global Markov property. We show that for SCMs in general various of those prop-
erties still hold under certain solvability conditions. A generalization of SCMs, known as
causal constraints models (CCMs), has been proposed [1] in order to completely model the
causal semantics of the equilibrium solutions of a dynamical system given the initial condi-
tions. This class of CCMs is rich enough to model the causal semantics of SCMs, but does
not come with a single graphical representation that provides both a Markov property and a
causal interpretation [2].

APPENDIX B: (UNIQUE) SOLVABILITY PROPERTIES

In this appendix, we provide additional (unique) solvability properties for SCMs. In Ap-
pendix B.1 we provide a sufficient condition of solvability w.r.t. (strict) subsets. In Ap-
pendix B.2 we discuss how (unique) solvability is preserved under strict super- and subsets.
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In Appendix B.3 we discuss how (unique) solvability is preserved under unions and intersec-
tions. The proofs of the theoretical results in this appendix are given in Appendix E.

B.1. Sufficient condition for solvability w.r.t. subsets. For solvability w.r.t. a (strict)
subset of I there exists a sufficient condition that is similar to the sufficient (and necessary)
condition (2) in Theorem 3.2 in the sense that it is formulated in terms of the solutions of (a
subset of) the structural equations, but no measurability is required.

PROPOSITION B.1 (Sufficient condition for solvability w.r.t. a subset). Let M =
〈I,J ,X ,E,f ,PE〉 be an SCM and O⊆ I a subset. If for PE -almost every e ∈ E and for all
x\O ∈X \O the topological space

S(e,x\O) := {xO ∈XO : xO = fO(x,e)} ,

with the subspace topology induced by XO is nonempty and σ-compact,5 thenM is solvable
w.r.t. O.

For many purposes, this condition of σ-compactness suffices since it contains for example
all countable discrete spaces, every interval of the real line, and moreover all the Euclidean
spaces. In particular, it suffices to prove a sufficient and necessary condition for unique solv-
ability w.r.t. a subset, in terms of the solutions of a subset of the structural equations (see
Theorem 3.6). For larger solution spaces, we refer the reader to [12]. For the class of linear
SCMs (see Definition C.1), we provide in Proposition C.2 a sufficient and necessary condi-
tion for solvability w.r.t. a (strict) subset of I .

B.2. (Unique) solvability w.r.t. strict super- and subsets. In general, (unique) solv-
ability w.r.t. O⊆ I does not imply (unique) solvability w.r.t. a strict superset O ( V ⊆ I nor
w.r.t. a strict subsetW (O, as can be seen in the following example.

EXAMPLE B.2 (Solvability is not preserved under strict sub- or supersets). Consider the
SCMM= 〈3,∅,R3,1,f ,P1〉 where the causal mechanism is given by

f1(x) = x1 · (1− 1{1}(x2)) + 1 , f2(x) = x2 , f3(x) = x3 · (1− 1{−1}(x2)) + 1 .

This SCM is (uniquely) solvable w.r.t. the subsets {1,2}, {2,3}, however it is not (uniquely)
solvable w.r.t. the subsets {1}, {3} and {1,2,3}, and not uniquely solvable w.r.t. {2}.

However, in Proposition 3.10 we show that solvability w.r.t. O implies solvability w.r.t.
every ancestral subset in G(M)O .

B.3. (Unique) solvability w.r.t. unions and intersections. In general, (unique) solv-
ability is not preserved under unions and intersections. The following example illustrates that
(unique) solvability is in general not preserved under intersections.

EXAMPLE B.3 (Solvability is not preserved under intersections). Consider the SCM
M= 〈3,∅,R3,1,f ,P1〉 where the causal mechanism is given by

f1(x) = 0 , f2(x) = x2 · (1− 1{0}(x1 · x3)) + 1 , f3(x) = 0 .

ThenM is (uniquely) solvable w.r.t. {1,2} and {2,3}, however it is not (uniquely) solvable
w.r.t. their intersection.

5A topological space X is called σ-compact if it is the union of a countable set of compact topological spaces.
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Example B.2 gives an example where (unique) solvability is not preserved under unions.
Even, if we take the union of disjoint subsets, (unique) solvability is not preserved (see Exam-
ple 2.4). Although, in general, unique solvability is not preserved under unions, we show next
that unique solvability is preserved under the union of ancestral subsets, under the following
assumptions.

PROPOSITION B.4 (Combining measurable solution functions on different sets). Let
M= 〈I,J ,X ,E,f ,PE〉 be an SCM, O ⊆ I a subset and A, Ã ⊆ O two ancestral subsets
in G(M)O . IfM is uniquely solvable w.r.t. A, Ã and A∩ Ã, thenM is uniquely solvable
w.r.t. A∪ Ã.

A consequence of this property is that in order to check whether an SCM is ancestrally
uniquely solvable w.r.t. O, it suffices to check that it is uniquely solvable w.r.t. the ancestral
subsets for each node in O.

COROLLARY B.5. LetM= 〈I,J ,X ,E,f ,PE〉 be an SCM and O ⊆ I a subset. Then
M is ancestrally uniquely solvable w.r.t. O if and only if M is uniquely solvable w.r.t.
anG(M)O(i) for every i ∈O.

APPENDIX C: LINEAR SCMS

In this appendix, we provide some results about (unique) solvability and marginalization
for linear SCMs. Linear SCMs form a special class of SCMs that has seen much attention in
the literature [see, e.g., 3, 11]. The proofs of the theoretical results in this appendix are given
in Appendix E.

DEFINITION C.1 (Linear SCM). We call an SCM M = 〈I,J ,RI ,RJ ,f ,PRJ 〉 linear
if each component of the causal mechanism is a linear combination of the endogenous and
exogenous variables, that is

fi(x,e) =
∑
j∈I

Bijxj +
∑
k∈J

Γikek ,

where i ∈ I , B ∈RI×I and Γ ∈RI×J are matrices, and PRJ is a product probability mea-
sure6 on RJ .

For a subset O⊆ I we also use the shorthand vector-notation

fO(x,e) =BOIx+ ΓOJ e .

A nonzero coefficient Bij for i, j ∈ I such that i 6= j corresponds with a directed edge j→ i
in the (augmented) graph, and a coefficient Bii = 1 for i ∈ I corresponds with a self-cycle
i→ i in the (augmented) graph of the SCM. A nonzero coefficient Γij for i ∈ I , j ∈ J with
PEj a nondegenerate probability distribution over R corresponds with a directed edge j→ i

in the augmented graph. A nonzero entry (ΓΓT )ij for i, j ∈ I with i 6= j such that there
exists a k ∈ J for which Γik,Γjk 6= 0 and PEk a nondegenerate probability distribution over
R corresponds with a bidirected edge i↔ j in the graph of the SCM.

For linear SCMs, the solvability condition w.r.t. a subset, Definition 3.1, translates into a
matrix condition. In order to state this condition we need to define the pseudoinverse (or the
Moore-Penrose inverse) A+ of a real matrix A [10, 22]. The pseudoinverse of the matrix A is
defined by A+ := V Σ+U∗, where A= UΣV ∗ is the singular value decomposition of A and
Σ+ is obtained by replacing each nonzero entry on the diagonal of Σ by its reciprocal [10].
One of its useful properties is that AA+A=A.

6Note that we do not assume that the probability measure PRJ is Gaussian.
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PROPOSITION C.2 (Sufficient and necessary condition for solvability w.r.t. a subset for
linear SCMs). Let M be a linear SCM and L ⊆ I and O = I \ L. Then M is solvable
w.r.t. L if and only if for the matrix ALL = IL −BLL, for PE -almost every e ∈ E and for all
xO ∈XO the identity

ALLA
+
LL(BLOxO + ΓLJ e) =BLOxO + ΓLJ e

is satisfied, where A+
LL is the pseudoinverse of ALL. Moreover, ifM is solvable w.r.t. L, then

for every vector v ∈RL the mapping gvL : RO ×RJ →RL given by

gvL(xO,e) =A+
LL(BLOxO + ΓLJ e) + [IL −A+

LLALL]v ,

is a measurable solution function forM w.r.t. L.

For linear SCMs, the unique solvability condition w.r.t. a subset translates into a matrix
invertibility condition, as was already shown in [11].

PROPOSITION C.3 (Sufficient and necessary condition for unique solvability w.r.t. a subset
for linear SCMs). Let M be a linear SCM, L ⊆ I and O = I \ L. Then M is uniquely
solvable w.r.t. L if and only if the matrix ALL = IL −BLL is invertible. Moreover, ifM is
uniquely solvable w.r.t. L, then the mapping gL : RO ×RJ →RL given by

gL(xO,e) =A−1
LL(BLOxO + ΓLJ e) ,

is a measurable solution function forM w.r.t. L.

Note that if ALL is invertible, then A+
LL = A−1

LL (see Lemma 1.3 in [22]), and the matrix
condition of Proposition C.2 is always satisfied and all the measurable solution functions gvL
of Proposition C.2 are (up to a PE -null set) equal to the solution function gL of Proposi-
tion C.3.

REMARK. A sufficient condition for ALL to be invertible is that the spectral radius of
BLL is less than one. If that is the case, then A−1

LL =
∑∞

n=0(BLL)n. Note that the nonzero
nondiagonal entries of the matrix BLL represent the directed edges in the induced subgraph
G(M)L. In particular, if the diagonal entries of the matrix BLL are zero, then for n ∈ N,
the coefficients of the matrix (BLL)n in the sum represent the sum of the product of the edge
weights Bij over directed paths of length n in the induced subgraph G(M)L.

From Proposition 3.10 we know that an SCM is solvable w.r.t. L if and only if it is an-
cestrally solvable w.r.t. L. In particular, this result also holds for linear SCMs. We saw in
Example 3.11 that a similar result for unique solvability does not hold, that is, in general, it
does not hold that unique solvability w.r.t. L implies ancestral unique solvability w.r.t. L. For
the class of linear SCMs we do have the following positive result.

PROPOSITION C.4 (Equivalent unique solvability conditions for linear SCMs). For a
linear SCMM and a subset L⊆ I the following are equivalent:

1. M is uniquely solvable w.r.t. L;
2. M is ancestrally uniquely solvable w.r.t. L;
3. M is uniquely solvable w.r.t. each strongly connected component in G(M)L.

Under the condition of unique solvability w.r.t. a subset L we can define the marginaliza-
tion w.r.t. L of a linear SCM by mere substitution.
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Fig 4: Damped coupled harmonic oscillator (top) and the graph of the SCMM that describes the positions of the masses at
equilibrium (bottom) of Example D.1 for d= 5.

PROPOSITION C.5 (Marginalization of a linear SCM). Let M be a linear SCM and
L ⊆ I a subset of endogenous variables such that IL −BLL is invertible. Then there exists
a marginalization Mmarg(L) that is linear and with marginal causal mechanism f̃ : RO ×
RJ →RO given by

f̃(xO,e) = [BOO +BOLA
−1
LLBLO]xO + [BOLA

−1
LLΓLJ + ΓOJ ]e ,

where ALL = IL −BLL. Moreover, this marginalization respects the latent projection, that
is,
(
Ga ◦marg(L)

)
(M)⊆

(
marg(L) ◦ Ga

)
(M).

From Theorem 5.6 we know thatM and its marginalizationMmarg(L) over L are obser-
vationally, interventionally and counterfactually equivalent w.r.t. O. A similar result can also
be found in [11]. In contrast to nonlinear SCMs, this class of linear SCMs has the convenient
property that every marginalization of a model of this class respects the latent projection.
Moreover, the subclass of simple linear SCMs is even closed under marginalization.

APPENDIX D: EXAMPLES

In this appendix, we provide additional examples. In Appendix D.1 we provide some ex-
amples of SCMs that describe the equilibrium states of certain feedback systems governed by
(random) differential equations [4] that motivated our study of cyclic SCMs. In Appendix D.2
we provide additional examples that support the main text.

D.1. SCMs as equilibrium models. In many systems occurring in the real world feed-
back loops between observed variables are present. For example, in economics, the price of
a product may be a function of the demanded or supplied quantities, and vice versa; or in
physics, two masses that are connected by a spring may exert forces on each other. Such sys-
tems are often described by a system of (random) differential equations. In [4] it was shown
that SCMs are capable of modeling the causal semantics of the equilibrium states of such sys-
tems. For illustration purposes we provide the following toy example of interacting masses
that are attached to springs.

EXAMPLE D.1 (Damped coupled harmonic oscillator). Consider a one-dimensional sys-
tem of d point masses mi ∈R (i= 1, . . . , d) with positions Qi, which are coupled by springs,
with spring constants ki > 0 and equilibrium lengths `i > 0 (i= 0, . . . , d), under influence of
friction with friction coefficients bi ∈ R (i = 1, . . . , d) and with fixed endpoints Q0 = 0 and
Qd+1 = L > 0 (see Figure 4 (top)). The equations of motion of this system are provided by
the following differential equations

d2Qi
dt2

=
ki
mi

(Qi+1 −Qi − `i) +
ki−1

mi
(Qi−1 −Qi + `i−1)− bi

mi

dQi
dt

(i= 1, . . . , d) .

The dynamics of the masses, in terms of the position, velocity and acceleration, is described
by a single and separate equation of motion for each mass. Under friction, that is, bi > 0
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(i = 1, . . . , d), there is a unique equilibrium position, where the sum of forces vanishes for
each mass. If one starts out of equilibrium, for example, by moving one or several masses out
of equilibrium, then the masses will start to oscillate and converge to their unique equilibrium
position. At equilibrium (i.e., for t→∞) the velocity dQi

dt and acceleration d2Qi
dt2 of the masses

vanish (i.e., dQidt ,
d2Qi
dt2 → 0), and thus the following equation holds at equilibrium

0 =
ki
mi

(Qi+1 −Qi − `i) +
ki−1

mi
(Qi−1 −Qi + `i−1) ,

for each mass (i= 1, . . . , d). Hence, for each mass i= 1, . . . , d its equilibrium position Qi is
given by

Qi =
ki(Qi+1 − `i) + ki−1(Qi−1 + `i−1)

ki + ki−1
.

By considering the `i and ki and L as fixed parameters, we arrive at a linear SCM (see [4]
for more details about constructing an SCM from a dynamical system)

M= 〈{1, . . . , d},∅,Rd,1,f ,P1〉 ,
where the causal mechanism f is given by

fi(q) =
ki(qi+1 − `i) + ki−1(qi−1 + `i−1)

ki + ki−1
.

Alternatively, (some of) the parameters could be treated as exogenous variables instead. Its
graph is depicted in Figure 4 (bottom). This SCM allows us to describe the equilibrium
behavior of the system under perfect intervention. For example, when forcing the mass j to a
fixed position Qj = ξj with 0≤ ξj ≤ L, the equilibrium positions of the masses correspond
to the solutions of the intervened modelMdo({j},ξj). It is an easy exercise to show thatM is
a simple SCM by using Proposition C.3.

Next, we show that the well known market equilibrium model from economics, which has
been thoroughly discussed in the literature [see, e.g., 25], can be described by a (non-simple)
SCM. This example illustrates how self-cycles enrich the class of SCMs.

EXAMPLE D.2 (Price, supply and demand). Let XD denote the demand and XS the
supply of a quantity of a product. The price of the product is denoted by XP . The following
system of differential equations describes how the demanded and supplied quantities are
determined by the price, and how price adjustments occur in the market:

XD = βDXP +ED

XS = βSXP +ES

dXP

dt
=XD −XS ,

where ED and ES are exogenous random influences on the demand and supply, respectively,
βD < 0 is the reciprocal of the slope of the demand curve, and βS > 0 is the reciprocal of
the slope of the supply curve. At the situation known as a “market equilibrium”, the price
is determined implicitly by the condition that demanded and supplied quantities should be
equal, since dXP

dt = 0 at equilibrium. Applying the results in [4] gives rise to a linear SCM
M = 〈{P,S,D},{S,D},R3,R2,f ,PE〉 at equilibrium with the causal mechanism defined
by

fD(x,e) := βDxP + eD

fS(x,e) := βSxP + eS

fP (x,e) := xP + (xD − xS) .
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ED

XD

ES

XS XP

Ga(M)

ED

XD

X ′D

ES

XS

X ′S

XP

X ′P

Ga(Mtwin)

ED

XD

X ′D

ES

XS

X ′S

XP

X ′P

Ga(Mtwin)do({S,S′})

Fig 5: The augmented graph of the SCM M (left), its twin SCM Mtwin (center) and the intervened twin SCM
(Mtwin)do({S,S′},(s,s′)) (right) of Examples D.2 and D.3.

Note how we use a self-cycle for P in order to implement the equilibrium equation XD =XS

as the causal mechanism for the price P .7 Moreover,M is uniquely solvable. Its augmented
graph is depicted in Figure 5 (left).

Next, we provide an example of how counterfactuals can be sensibly formulated for cyclic
SCMs, namely for the price, supply and demand model at equilibrium.

EXAMPLE D.3 (Price, supply and demand at equilibrium). Consider the price, supply
and demand model at equilibrium of Example D.2 given by the SCMM. As an example of a
counterfactual query, consider

P(X ′P |do(XS = s,XS′ = s′),XP = p) ,

which denotes the conditional distribution of X ′P given XP = p of a solution of the inter-
vened twin modelMtwin

do({S,S′},(s,s′)). In words: how would—ceteris paribus—price have been
distributed, had we intervened to set supplied quantities equal to s′, given that actually we
intervened to set supplied quantities equal to s and observed that this led to price p? A
straightforward calculation shows that this counterfactual distribution of price is the Dirac
measure on x′P = p+ (s′ − s)/βD . The augmented graphs of the SCM, its twin graph, and
its intervened twin graph are depicted in Figure 5.

D.2. Additional examples. In this subsection, we provide additional examples that sup-
port the main text.

Section 2.

EXAMPLE D.4 (Structural equations up to almost sure equality). Consider the SCM
M= 〈1,1,X ,E , f,PE〉 with X = E = {−1,0,1}, PE({−1}) = PE({1}) = 1

2 and f(x, e) =

e2 +e−1. Let M̃ be the SCMM but with a different causal mechanism f̃(x, e) = e. Then the
sets of solutions of the structural equations agree for both SCMs for e ∈ {−1,+1}, while they
differ only for e= 0, which occurs with probability zero. Hence, a pair of random variables
(X,E) is a solution ofM if and only if it is a solution of M̃.

7Richardson and Robins [25] argue that this market equilibrium model cannot be modeled as an SCM. We
observe that it can, as long as one allows for self-cycles.
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X1 X2

E1 E2E3

X1 X2

E

Fig 6: Augmented graphs of the SCMsM (left) andM∗ (right) in Example D.6. For SCMM∗ , the exogenous variable E
consists of two real-valued components; the structural equation for X1 depends only on the first, while the structural equation
for X2 depends only on the second component.

EXAMPLE D.5 (The for-all and for-almost-every quantifier do not commute in general).
Consider the SCMM= 〈2,1,X ,E ,f ,PE〉 with X = (0,1)2, E = (0,1), the causal mecha-
nism f given by

f1(x, e) = x1 , f2(x, e) = 1{0}(x1 − e) · (x2 + 1) ,

and PE = PE with E ∼U(0,1). Define the property

P (x, e) :=

{
1 if x= f(x, e) holds,
0 otherwise.

Then, for all x ∈X and for PE -almost every e ∈ E the property P (x, e) holds, however for
PE -almost every e ∈ E and for all x ∈X the property P (x, e) does not hold, since for PE -
almost every e ∈ E the equation x= f(x, e) does not hold for x1 = e. Hence, in general, for
a property P (x, e) we have that for all x ∈X and for PE -almost every e ∈ E P (x, e) does
not imply for PE -almost every e ∈ E for all x ∈X P (x, e) (see Lemma F.11 for additional
properties of the for-almost-every quantifier).

EXAMPLE D.6 (Representation of latent confounders). Consider the SCM M =
〈2,3,R2,R3,f ,PR3〉 with causal mechanism given by

f1(e1, e3) = e1 + e3

f2(x1, e2, e3) = x1e3 + e2

and PR3 the standard-normal distribution on R3; Figure 6 (left) shows the corresponding
augmented graph. Then there exists no SCMM∗ = 〈2,1,R2,R2,f∗,P∗R2〉 that satisfies the
following conditions:

1. M∗ is interventionally equivalent toM,
2. its structural equations have the form

x1 = f∗1 (e∗1)

x2 = f∗2 (x1, e
∗
2),

where e∗1, e
∗
2 are the two components of e∗ = (e∗1, e

∗
2) ∈R2,

3. the function e∗2 7→ f∗2 (x1, e
∗
2) is strictly monotonically increasing for all x1 ∈R,

4. the cumulative distribution function F ∗2 of the second component of P∗R2 is continuous and
strictly monotonically increasing.

The augmented graph of such an SCM is shown in Figure 6 (right).
The proof of this statement proceeds by contradiction. Assume that such an SCM M∗

exists. For any uniquely solvable SCM M̄ and any endogenous variable i appearing in M̄,
we denote with F M̄Xi the marginal cumulative distribution function of the ith component of the
observational distribution of M̄. For all ξ ∈R, we have for all x2 ∈R

(1) F
Mdo({1},ξ)
X2

(x2) = P(ξE3 +E2 ≤ x2) = Φ
(
x2/
√

1 + ξ2
)
,
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where Φ denotes the (invertible) cdf of the standard-normal distribution. Now define φ : R→
R with φ(e2) := Φ−1(F ∗2 (e2)) and define the SCM M̃ := 〈2,1,R2,R2, f̃ , P̃R2〉 such that the
causal mechanism f̃ is given by

f̃1(e1) = f∗1 (e1),

f̃2(x1, e2) = f∗2 (x1, φ
−1(e2)),

and P̃R2 is the push-forward measure of P∗R2 using (idR, φ). Then, M̃ is interventionally
equivalent toM∗ by construction, and the second component of P̃R2 has a standard-normal
distribution. Let (X̃1, X̃2, Ẽ) be a solution of M̃ and let us write Ẽ = (Ẽ1, Ẽ2). Then, for all
ξ ∈R and ẽ2 ∈R,

F
M̃do({1},ξ)
X2

(f̃2(ξ, ẽ2)) = P(f̃2(ξ, Ẽ2)≤ f̃2(ξ, ẽ2)) = P(Ẽ2 ≤ ẽ2) = Φ(ẽ2),

using that ẽ2 7→ f̃2(ξ, ẽ2), too, is strictly monotonically increasing for all ξ. This implies that,
for all ξ ∈R and ẽ2 ∈R,

f̃2(ξ, ẽ2) = (F
Mdo({1},ξ)
X2

)−1
(
Φ(ẽ2)

)
=
√

1 + ξ2 ẽ2 ,

where we used interventional equivalence of M and M̃, and (1) for the second equality.

Furthermore, X̃2 = f̃2(X̃1, Ẽ2) =
√

1 + X̃2
1 Ẽ2 a.s., so Ẽ2 = X̃2/

√
1 + X̃2

1 a.s.. Now let

(X1,X2,E1,E2,E3) be a solution of M. By observational equivalence, (X̃1, X̃2) has the
same distribution as (X1,X2), and thus Ẽ2 is distributed as

X2√
1 +X2

1

=
(E1 +E3)E3 +E2√

1 + (E1 +E3)2
a.s..

This contradicts the fact that Ẽ2 has a standard-normal distribution as, for example, the
mean of the right-hand side is nonzero.

EXAMPLE D.7 (Counterfactual density unidentifiable from observational and interven-
tional densities [6]). Let ρ ∈R and

Mρ = 〈2,2,{0,1} ×R,{0,1} ×R2,f ,PE〉

be the SCM with causal mechanism given by

f1(x,e) = e1 , f2(x,e) = e21(1− x1) + e22x1

and PE = P(E1,E2) with E1 ∼Bernoulli(1/2),

E2 :=

(
E21

E22

)
∼N

(
0,

(
1 ρ
ρ 1

))
normally distributed and E1⊥⊥E2. In an epidemiological setting, this SCM could be used
to model whether a patient was treated or not (X1) and the corresponding outcome for that
patient (X2).

Suppose in the actual world we did not assign treatment to a patient (X1 = 0) and the
outcome was X2 = c ∈ R. Consider the counterfactual query “What would the outcome
have been, if we had assigned treatment to this patient?”. We can answer this question by
introducing a parallel counterfactual world that is modeled by the twin SCM Mtwin

ρ , as
depicted in Figure 7. The counterfactual query then asks for p(X2′ = x2′ | do(X1′ = 1,X1 =
0),X2 = c). One can calculate that(

X2′

X2

)
| do(X1′ = 1,X1 = 0)∼N

(
0,

(
1 ρ
ρ 1

))
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E2

E1

X1

X2

E2

E1

X1

X2

X1′

X2′

E2

X1

X2

X1′

X2′

Fig 7: The augmented graph of the SCM Mρ (left), its twin SCM Mtwin
ρ (center) and the intervened twin SCM

(Mtwin
ρ )do({1′,1},(1,0)) (right) of Example D.7.

X1 X2

E1 E2

Ga(M̄)
X1 X2

E1 E2

Ga(M̂)
X1 X2

E1 E2

Ga(M)
X1 X2

E1 E2

Ga(M̃)

Fig 8: The augmented graphs of SCMs M̄, M̂,M, and M̃ that appear in Examples 4.4, D.10, and D.13.

and hence X2′ | do(X1′ = 1,X1 = 0),X2 = c∼N (ρc,1− ρ2). Note that the answer to the
counterfactual query depends on a quantity ρ that we cannot identify from the observational
density p(X1,X2) or the interventional densities p(X2 |do(X1 = 0)) and p(X2 |do(X1 =
1)), none of which depends on ρ. Therefore, even data from randomized controlled trials
combined with observational data would not suffice to determine the value of this particular
counterfactual query. Indeed, SCMsMρ andMρ′ with ρ 6= ρ′ are interventionally equiva-
lent, but not counterfactually equivalent.

Section 3.

EXAMPLE D.8 (Mixtures of solutions are solutions). LetM = 〈1,∅,R,1, f,P1〉 be an
SCM with causal mechanism f : X × E → X defined by f(x, e) = x− x2 + 1. There exist
only two measurable solution functions g± : E → X for M, defined by g±(e) = ±1. Let
X : Ω→ R be a random variable that is a nontrivial mixture of point masses on {−1,+1}.
Then X is a solution ofM, however neither g+(E) =X a.s., nor g−(E) =X a.s., for any
random variable E such that PE = PE .

EXAMPLE D.9 (Solvability is not preserved under perfect intervention). Consider the
SCMM= 〈2,∅,R2,1,f ,P1〉 with the following causal mechanism

f1(x) = x1 + x2
1 − x2 + 1 , f2(x) = x2(1− 1{0}(x1)) + 1 .

This SCM has a unique solution (0,1). Doing a perfect intervention do({1}, ξ1) for some
ξ1 6= 0, however, leads to an intervened modelMdo({1},ξ1) that is not solvable. Performing
instead the perfect intervention do({2}, ξ2) for some ξ2 > 1 leads also to a nonuniquely solv-
able SCMMdo({2},ξ2) which has solutions with multiple induced distributions, for example,
(X1,X2) = (φ(ξ2)

√
ξ2 − 1, ξ2) with some measurable φ : R→{−1,+1}, but also mixtures

of those.

Section 4.

EXAMPLE D.10 (Counterfactually equivalent SCMs with different graphs). Consider
the SCM M̂= 〈2,2,{−1,1}2,{−1,1}2, f̂ ,PE〉 with causal mechanism given by f̂1(x,e) =



SUPPLEMENT TO “FOUNDATIONS OF STRUCTURAL CAUSAL MODELS” 23

e1 and f̂2(x,e) = e2, and PE = PE with E1,E2 ∼ U({−1,1}) uniformly distributed and
E1⊥⊥E2. Consider also the SCMM that is the same as M̂ except for its causal mechanism,
which is given by f1(x,e) = e1 and f2(x,e) = e1e2. ThenM and M̂ are counterfactually
equivalent although G(M) is not equal to G(M̂) (see Figure 8).

Section 5.

EXAMPLE D.11 (Marginalization condition of an SCM is not a necessary condition).
Consider the SCMM= 〈4,1,R4,R,f ,PR〉 with causal mechanism given by

f1(x, e) = e , f2(x, e) = x1 , f3(x, e) = x2 , f4(x, e) = x4

and PR is the standard-normal measure on R. This SCM is solvable w.r.t. L= {2,4}, but not
uniquely solvable w.r.t. L, and hence we cannot apply Definition 5.3 to L. However, the SCM
M̃ on the endogenous variables {1,3} with the causal mechanism f̃ given by f̃1(x, e) = e
and f̃3(x, e) = x1 is counterfactually equivalent to M w.r.t. {1,3}, which can be checked
easily.

EXAMPLE D.12 (Graph of the marginal SCM is a strict subgraph of the latent projection).
Consider the SCMM= 〈3,1,R3,R,f ,PR〉 with causal mechanism given by

f1(x,e) = e1 , f2(x,e) = x1 − x3 , f3(x,e) = x1

and take for PR the standard-normal measure on R. In contrast, to the (augmented) graph of
M, there is no directed path in the (augmented) graph of the marginal SCMMmarg({3}).

Section 7.

EXAMPLE D.13 (Detecting a bidirected edge in the graph of an SCM). Consider the
SCM M̄= 〈2,2,{−1,1}2,{−1,1}2, f̄ ,PE〉 with causal mechanism given by f̄1(x,e) = e1

and f̄2(x,e) = x1e2, and PE = PE with E1,E2 ∼ U({−1,1}) uniformly distributed and
E1⊥⊥E2. Consider also the SCM M̃ that is the same as M̄ except for its causal mech-
anism, which is given by f̃1(x,e) = e1 and f̃2(x,e) = x1e1. See Figure 8 for their aug-
mented graphs. For the SCM M̃ we observe that the marginal interventional distribution
PM̃do({1},ξ1)

(X2 =−1) is not equal to the conditional distribution PM̃(X2 =−1 |X1 = ξ1)

for both ξ1 = −1 and ξ1 = 1. This observation suffices to identify the presence of the bidi-
rected edge 1↔ 2 in the graph G(M̃). For the SCM M̄, whose graph does not contain the
bidirected edge 1↔ 2, the marginal interventional distribution and conditional distribution
coincide.

APPENDIX E: PROOFS

This appendix contains the proofs of all the theoretical results in the appendices A, B and
C, and the main text. Some of the proofs will rely on the measure theoretic terminology and
results of Appendix F.

E.1. Proofs of the appendices.
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Appendix A.

PROOF OF LEMMA A.5. It suffices to show that for every C-d-open walk between i and
j in G, there exists a C-d-open path between i and j in G. Take a C-d-open walk π = (i=
i0, . . . , in = j). If a node ` occurs more than once in π, let ij be the first occurrence of ` in
π and ik the last occurrence of ` in π. We now construct a new walk π′ from π by removing
the subwalk between ij and ik of π from π. It is easy to check that the new walk π′ is still
C-d-open. If ` is an endpoint on π′, then ij or ik must be endpoint of π, and hence ` /∈ C .
If ` is a non-endpoint non-collider on π′, then also ij or ik must have been a non-endpoint
non-collider on π, and hence ` /∈ C . If ` is a collider on π′, then either (i) ij or ik are both
colliders on π, and hence ` is ancestor of C in G, or (ii) on the subwalk between ij and ik
that was removed, there must be a directed path in G from ij or ik to a collider in anG(C),
and hence, ` is in anG(C). The other nodes on π′ cannot be responsible for C-d-blocking
the walk, since they also occur (together with their adjacent edges) on π and they do not
C-d-block π.

In π′, the number of nodes that occur multiple times is at least one less than in π. Repeat
this procedure until no repeated nodes are left.

PROOF OF THEOREM A.7. The first case is a well known result. An elementary proof is
obtained by noting that an acyclic system of structural equations trivially satisfies the local di-
rected Markov property, and then apply [16, Proposition 4], followed by applying the stability
of d-separation with respect to (graphical) marginalization [8, Lemma 2.2.15]. Alternatively,
the result also follows from sequential application of Theorems 3.8.2, 3.8.11, 3.7.7, 3.7.2 and
3.3.3 (using Remark 3.3.4) in [8].

The discrete case is proved by the series of results Theorem 3.8.12, Remark 3.7.2, Theo-
rem 3.6.6 and 3.5.2 in [8].

The linear case is proved in Example 3.8.17 in [8]. To connect the assumptions made there
with the ones we state here, observe that under the linear transformation rule for Lebesgue
measures, the image measure of PE under the linear mapping RJ →RI : e 7→ ΓIJ e gives a
measure on X = RI with a density w.r.t. the Lebesgue measure on RI , as long as the image
of the linear mapping is the entire RI . This is guaranteed if each causal mechanism has a
nontrivial dependence on some exogenous variable(s), that is, for each i ∈ I there is some
j ∈ J with Γij 6= 0.

PROOF OF PROPOSITION A.12. This follows directly from the fact that the strongly con-
nected components of Ga(M) form a DAG by Lemma A.2 and that the directed edges in
Ga(acy(M)) by construction respect every topological ordering of that DAG. Both SCMs
are observationally equivalent by construction.

PROOF OF PROPOSITION A.14. This follows immediately from the Definitions A.11 and
A.13.

PROOF OF LEMMA A.17. It suffices to show that for every C-σ-open walk between i and
j in G, there exists a C-σ-open path between i and j in G. Let π = (i = i0, . . . , in = j) be
a C-σ-open walk in G. If a node ` occurs more than once in π, let ij be the first node in π
and ik the last node in π that are in the same strongly connected component as `. Since ij
and ik are in the same strongly connected component, there are directed paths ij→ · · · → ik
and ik → · · · → ij in G. We now construct a new walk π′ from π by replacing the subwalk
between ij and ik of π by a particular directed path between ij and ik: (i) If k = n, or if
k < n and ik→ ik+1 on π, we replace it by a shortest directed path ij→ · · · → ik, otherwise
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(ii) we replace it by a shortest directed path ij ← · · · ← ik. We now show that the new walk
π′ is still C-σ-open.
π′ cannot become C-σ-blocked through one of the initial nodes i0 . . . ij−1 or one of the

final nodes ik+1 . . . in on π′, since these nodes occur in the same local configuration on π and
do not C-σ-block π by assumption. Furthermore, π′ cannot become C-σ-blocked through
one of the nodes strictly between ij and ik on π′ (if there are any), since these nodes are
all non-endpoint non-colliders that only point to nodes in the same strongly connected com-
ponent on π′. Because π is C-σ-open, ik /∈ C if k = n or if ik → ik+1 on π. This holds in
particular in case (i). Similarly, ij /∈C if j = 0 or ij−1← ij on π.

In case (i), π′ is not C-σ-blocked by ik because ik is a non-collider on π′ but ik /∈C . Also
ij does not C-σ-block π′. Assume ij 6= ik (otherwise there is nothing to prove). If j = 0, or
if j > 0 and ij−1← ij on π′, then the same holds for π and hence ij /∈ C; ij is then a non-
collider on π′, but ij /∈C . If j > 0 and ij−1↔ ij or ij−1→ ij on π′ then ij is a non-endpoint
non-collider on π′ that does not point to a node in another strongly connected component.

Now consider case (ii). If j = 0 or ij−1← ij on π′ then this case is analogous to case (i).
So assume j > 0 and ij−1→ ij or ij−1↔ ij on π′. If ij is an endpoint of π′, then ij = ik and
k = n and therefore ik /∈ C , and hence ij and ik do not C-σ-block π′. Otherwise, ij must
be a collider on π′ (whether ij = ik or not). Then on the subwalk of π between ij and ik
there must be a directed path from ij to a collider that is ancestor of C , which implies that
ij is itself ancestor of C , and hence ij does not C-σ-block π′. Also ik cannot C-σ-block
π′. Assume ij 6= ik (otherwise there is nothing to prove). Since ik ← ik+1 or ik ↔ ik+1 on
π′, ik is a non-endpoint non-collider on π′ that does not point to a node in another strongly
connected component.

Now in π′, the number of nodes that occurs more than once is at least one less than in π.
Repeat this procedure until no nodes occur more than once.

PROOF OF PROPOSITION A.19. This follows directly as a special case of Corollary 2.8.4
in [8].

PROOF OF THEOREM A.21. An SCM M that is uniquely solvable w.r.t. each strongly
connected component is uniquely solvable and hence, by Theorem 3.6, all its solutions
have the same observational distribution. The last statement follows from the series of re-
sults Theorem 3.8.2, 3.8.11, Lemma 3.7.7 and Remark 3.7.2 in [8]. Alternatively, we give
here a shorter proof: Under the stated conditions one can always construct the acyclification
acy(M) which is observationally equivalent toM and is acyclic (see Proposition A.12) and
hence we can apply Theorem A.7 to acy(M). Together with Proposition A.14 and A.19 this
gives

A
σ
⊥
G(M)

B |C ⇐⇒ A
d
⊥

acy(G(M))
B |C =⇒ A

d
⊥

G(acy(M))
B |C =⇒ XA ⊥⊥

PXM
XB |XC ,

for A,B,C ⊆ I and X a solution ofM.

PROOF OF COROLLARY A.22. First observe that simplicity is preserved under both per-
fect intervention and the twin operation (see Proposition 8.2). Now the first statement follows
from Theorem A.21 if one takes into account the identities of Proposition 2.14 and 2.19. Sim-
ilarly, the last statement follows from Theorem A.7.

PROOF OF PROPOSITION A.32. Let M̃ =: 〈V, Ĥ,X ,E, f̃ ,PE〉 be the induced SCM.
Observe that every loop O ∈ L(G(M̃)) is a loop in L(G). Fix x̌ ∈ X and ě ∈ E . For ev-
ery O ∈L(G(M̃)), define

IO := (paG(O) \O) \ (pa(O) \O)⊆ Ĩ
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and

JO := {F ∈ J̃ : F ∩O 6= ∅} \ pa(O)⊆ J̃ .

Now, define the family of measurable mappings (g̃O)O∈L(G(M̃)), where the mapping g̃O :

X pa(O)\O × Epa(O)→XO is given by

g̃O(xpa(O)\O,epa(O)) := gO(xpa(O)\O, x̌IO ,epa(O), ěJO)

where xpaG(O)\O = (xpa(O)\O, x̌IO) and êO = (epa(O), ěJO). Observe that from the defini-
tion of the parents (see Definition 2.6) it follows that for PE -almost every e ∈ E and for all
x ∈X we have

xO = f̃O(x\IO , x̌IO ,e\JO , ěJO) ⇐⇒ xO = f̃O(x,e) .

This, together with the fact that the family of mappings (gO)O∈L(G) is a compatible system
of solution functions, implies that for PE -almost every e ∈ E and for all x ∈X we have

xO = g̃O(xpa(O)\O,epa(O)) =⇒ xO = f̃O(x,e) .

Hence, ι(M̂) is loop-wisely solvable and thus (g̃O)O∈L(G(M̃)) is a family of measurable

solution functions. In particular, for all O, Õ ∈ L(G(M̃)) with Õ ⊆ O and for PE -almost
every e ∈ E and for all x ∈X we have

xO = g̃O(xpa(O)\O,epa(O)) =⇒ xÕ = g̃Õ(xpa(Õ)\Õ,epa(Õ)) .

From this we conclude that (g̃O)O∈L(G(M̃)) is a compatible system of solution functions.

PROOF OF LEMMA A.33. Suppose M is loop-wisely uniquely solvable and consider a
subset O ⊆ I . Consider the induced subgraph Ga(M)O of Ga(M) on the nodes O. Then
every strongly connected component of Ga(M)O is an element of L(G(M)). Let C be such
a strongly connected component in Ga(M)O , and let gC : X pa(C)\C × Epa(C) → X C be a
measurable solution function for M w.r.t. C. Since Ga(M)O partitions into strongly con-
nected components, we can recursively (by following a topological ordering of the DAG
Ga(M)sc

O from Lemma A.2) insert these mappings into each other to obtain a mapping
gO : X pa(O)\O × Epa(O)→XO that makesM uniquely solvable w.r.t. O.

PROOF OF PROPOSITION A.34. Let (gO)O∈L(G(M)) be any family of measurable solu-
tion functions, where gO is measurable solution function of M w.r.t. O. Then, for O, Õ ∈
L(G(M)) such that Õ ⊆ O, we have that for PE -almost every e ∈ E and for all x ∈X

xO = fO(x,e) =⇒ xÕ = fÕ(x,e) .

This implies that for PE -almost every e ∈ E and for all x ∈X

xO = gO(xpa(O)\O,epa(O)) =⇒ xÕ = gÕ(xpa(Õ)\Õ,epa(Õ)) .

PROOF OF COROLLARY 8.5. This follows directly from Proposition 7.1 and 7.2.
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Appendix B.

PROOF OF PROPOSITION B.1. Let f̃ : E ×X →X be the causal mechanism of a struc-
turally minimal SCM that is equivalent to M (see Proposition 2.11). In particular, for
any ε\pa(O) ∈ E\pa(O) and ξ\pa(O) ∈ X \pa(O), we have that for all x ∈ X and all e ∈ E ,
f̃(x,e) = f̃(xpa(O),ξ\pa(O),epa(O),ε\pa(O)). This means that we may also consider f̃ as a
mapping f̃ : X pa(O) × Epa(O)→X .

Consider the set

S̃ := {(epa(O),xpa(O)\O,xO) ∈ Epa(O) ×X pa(O)\O ×XO : xO = f̃O(xpa(O),epa(O))} .

By similar reasoning as in the proof of Theorem 3.2, S̃ is measurable.
By assumption, for PE -almost every e ∈ E and for all x\O ∈X \O the space {xO ∈XO :

xO = fO(x,e)} is nonempty and σ-compact. By applying Lemma F.10 to the canonical
projection prEpa(O) : E → Epa(O) and using the equivalence of f and f̃ , we obtain that for
PEpa(O)

-almost every epa(O) ∈ Epa(O) and for all xpa(O)\O ∈X pa(O)\O the space

S̃(epa(O),xpa(O)\O) := {xO ∈XO : xO = f̃O(xpa(O),epa(O))}

is nonempty and σ-compact.
The second measurable selection theorem, Theorem F.9, now implies that there exists a

measurable gO : X pa(O)\O × Epa(O) → XO such that for PEpa(O)
-almost every epa(O) ∈

Epa(O) and for all xpa(O)\O ∈X pa(O)\O

gO(xpa(O)\O,epa(O)) = f̃O
(
xpa(O)\O,gO(xpa(O)\O,epa(O)),epa(O)

)
.

Once more applying Lemma F.10, we obtain that for PE -almost every e ∈ E and for all
x ∈X

xO = gO(xpa(O)\O,epa(O)) =⇒ xO = fO(x,e).

HenceM is solvable w.r.t. O.

PROOF OF PROPOSITION B.4. Without loss of generality, we assume that M is struc-
turally minimal (see Proposition 2.11). Define C := A ∩ Ã and D := A ∪ Ã. Let gA, gÃ
be measurable solution functions forM w.r.t. A and Ã, respectively. Note that pa(C) \ C ⊆
pa(A) \ A and similarly pa(C) \ C ⊆ pa(Ã) \ Ã. Indeed, for c ∈ pa(C): if c ∈O then c ∈ C
because A and Ã are both ancestral in G(M)O , while if c /∈O then c /∈A and c /∈ Ã. Hence
by Lemma E.1, for PE -almost all e ∈ E and for all x ∈X

(gA)C(xpa(A)\A,epa(A)) = (gÃ)C(xpa(Ã)\Ã,epa(Ã)) .
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Hence for PE -almost every e ∈ E and for all x ∈X
xD = fD(x,e)

⇐⇒


xA\C = fA\C(x,e)

xC = fC(x,e)

xC = fC(x,e)

xÃ\C = fÃ\C(x,e)

⇐⇒


xA\C = (gA)A\C(xpa(A)\A,epa(A))

xC = (gA)C(xpa(A)\A,epa(A))

xC = (gÃ)C(xpa(Ã)\Ã,epa(Ã))

xÃ\C = (gÃ)Ã\C(xpa(Ã)\Ã,epa(Ã))

⇐⇒

{
xA = gA(xpa(A)\A,epa(A))

xÃ = gÃ(xpa(Ã)\Ã,epa(Ã)) .

Now pa(A) \ A ⊆ pa(D) \ D, and similarly, pa(Ã) \ Ã ⊆ pa(D) \ D. Hence, we conclude
that the mapping hD : X pa(D)\D × Epa(D)→XD defined by

hD(xpa(D)\D,epa(D)) :=(
(gA)A\C(xpa(A)\A,epa(A)), (gA)C(xpa(A)\A,epa(A)), (gÃ)Ã\C(xpa(Ã)\Ã,epa(Ã))

)
is a measurable solution function for M w.r.t. D, and that M is uniquely solvable w.r.t.
D.

PROOF OF COROLLARY B.5. It suffices to show the implication to the left. We have to
show thatM is uniquely solvable w.r.t. each ancestral subset of G(M)O . The proof proceeds
via induction with respect to the size of the ancestral subset. For ancestral subsets of size 0,
the claim is trivially true. Ancestral subsets of size 1 must be of the form {i}= anG(M)O(i)
for i ∈ O and hence the claim is true by assumption. Assume that the claim holds for all
ancestral subsets of size ≤ n. Let A be an ancestral subset of G(M)O of size n + 1. If
A = anG(M)O(i) for some i ∈ O then the claim holds for A by assumption. Otherwise,
A=

⋃
i∈A anG(M)O(i) is a union of ancestral subsets of size ≤ n. Choose distinct elements

{i1, . . . , ik} ⊆ A where k is the smallest integer such that
⋃k
j=1 anG(M)O(ij) = A. By ap-

plying Proposition B.4 to
⋃k−1
j=1 anG(M)O(ij) and anG(M)O(ik), thereby noting that the inter-

section of these two sets is an ancestral subset of size ≤ n and making use of the induction
hypothesis, we arrive at the conclusion thatM is uniquely solvable w.r.t. A.

Appendix C.

PROOF OF PROPOSITION C.2. Let e ∈ E and xO ∈XO . For xL ∈X ,

xL = fL(x,e)

⇐⇒ xL =BLLxL +BLOxO + ΓLJ e

⇐⇒ ALLxL =BLOxO + ΓLJ e

⇐⇒

{
ALLA

+
LL(BLOxO + ΓLJ e) =BLOxO + ΓLJ e

∃v∈XL : xL =A+
LL(BLOxO + ΓLJ e) + [IL −A+

LLALL]v ,

where the last equivalence follows from [Theorem 2, 22].
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PROOF OF PROPOSITION C.3. M is uniquely solvable w.r.t. L if and only if for PE -
almost every e ∈ E and for all xO ∈XO the linear system of equations

xL = fL(x,e)

⇐⇒ xL =BLLxL +BLOxO + ΓLJ e

⇐⇒ ALLxL =BLOxO + ΓLJ e

has a unique solution xL ∈ XL. Hence,M is uniquely solvable w.r.t. L if and only if ALL is
invertible.

PROOF OF PROPOSITION C.4. It suffices to show (1) =⇒ (2) and (1) ⇐⇒ (3). We
start by showing that (1) =⇒ (2). Let V ⊆ L and denote U := anG(M)L(V), then we need
to show that M is uniquely solvable w.r.t. U . From Proposition C.3 we know that M is
uniquely solvable w.r.t. L if and only if the matrix ALL = IL−BLL is invertible. The matrix
ALL is invertible if and only if the rows of ALL are all linearly independent. In particular,
the rows of AUL are all linearly independent. Because AUL = [AUU ZUL], where ZUL is the
zero matrix, we know that the rows of AUU = IU − BUU are also all linearly independent,
and hence AUU is invertible.

Next, we show that (1) ⇐⇒ (3). Observe that the strongly connected components
of G(M)L form a partition of the set L and that the directed mixed graph G(M)L and
the directed graph Ga(M)L have the same strongly connected components. Because, by
Lemma A.2, the graph of strongly connected components Gsc of the directed graph Ga(M)L
is a DAG, the square matrix BLL can be permuted to an upper triangular block matrix B̃LL,
where for each diagonal block B̃VV of B̃LL the set of nodes V is a strongly connected com-
ponent in G(M)L.

Without loss of generality we assume now that BLL is an upper triangular block matrix.
From Proposition C.3 it follows thatM is uniquely solvable w.r.t. L if and only if the matrix
ALL = IL −BLL is invertible. Because BLL is an upper triangular block matrix, we know
that ALL is an upper triangular block matrix, where for each diagonal block AVV of ALL
the set of nodes V is a strongly connected component in G(M)L. Since an upper triangular
block matrix ALL is invertible if and only if every diagonal block in ALL is invertible, we
have that M is uniquely solvable w.r.t. L if and only if M is uniquely solvable w.r.t. each
strongly connected component in G(M)L.

PROOF OF PROPOSITION C.5. By the definition of marginalization and Proposition C.3
the marginal causal mechanism f̃ is given by

f̃(xO,e) := fO(xO,gL(xO,e),e)

=BOOxO +BOLgL(xO,e) + ΓOJ e

= [BOO +BOLA
−1
LLBLO]xO + [BOLA

−1
LLΓLJ + ΓOJ ]e .

From Propositions C.4 and 5.11 it follows that the marginalization respects the latent projec-
tion.

E.2. Proofs of the main text.

Section 2.

PROOF OF PROPOSITION 2.11. Let i ∈ I . Note that Definition 2.6 can alternatively be
formulated as follows: for k ∈ I ∪ J , k 6∈ pa(i) if and only if there exists a measurable
mapping f̂i : X × E→Xi such that for PE -almost every e ∈ E and for all x ∈X ,

xi = fi(x,e) ⇐⇒ xi = f̂i(x,e)
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and either k ∈ I and there exists x̂k ∈ Xk such that f̂i(x,e) = f̂i(x\k, x̂k,e) for all x ∈
X ,e ∈ E , or k ∈ J and there exists êk ∈ Ek such that f̂i(x,e) = f̂i(x,e\k, êk) for all
x ∈X ,e ∈ E . By repeatedly applying (this formulation of) Definition 2.6 to all k /∈ pa(i),
we obtain the existence of a measurable mapping f̃i : X × E →Xi and x̂\pa(i) ∈ X \pa(i),
ê\pa(i) ∈ E\pa(i) such that for PE -almost every e ∈ E and for all x ∈X ,

xi = fi(x,e) ⇐⇒ xi = f̃i(x,e),

and for all e ∈ E and all x ∈X ,

f̃i(x,e) = f̃i(xpa(i), x̂\pa(i),epa(i), ê\pa(i)).

Define the SCM M̃ as M except that its causal mechanism is f̃ instead of f . Then M̃ is
structurally minimal and equivalent toM.

PROOF OF PROPOSITION 2.14. The do(I,ξI) operation on M completely removes the
functional dependence on x and e from the fi components for i ∈ I and hence the cor-
responding incoming directed and bidirected edges on nodes in I from the (augmented)
graph.

PROOF OF PROPOSITION 2.15. The first statement follows from Definitions 2.12 and
2.13. For the second statement, note that a perfect intervention can only remove parental
relations, and therefore will never introduce a cycle.

PROOF OF PROPOSITION 2.19. This follows directly from Definitions 2.17 and 2.18.

PROOF OF PROPOSITION 2.20. The additional edges introduced by the twin operation
cannot lead to a directed cycle involving both copied and original nodes, because there are
no edges pointing from copied nodes to original nodes (i.e., of the form i′→ v with i′ ∈ I ′ and
v ∈ V). Directed cycles involving only original nodes are absent by assumption, and directed
cycles involving only copied nodes as well since they would correspond with a directed cycle
in the original directed graph.

PROOF OF PROPOSITION 2.21. It suffices to prove the property for directed graphs, since
the property for SCMs follows directly from Definitions 2.12 and 2.17.

Applying the intervention do(I) on the graph G removes all the incoming edges from the
nodes in I . Now, if we perform the twin operation w.r.t. I on this graph do(I)(G), then we
copy the same edges as if we had twinned the graph G w.r.t. I , except those edges that do
point to one of the nodes in I . Hence, if we apply the intervention do(I ∪ I ′) on the graph
twin(I)(G), which removes all incoming edges of both I and its copy I ′, then we clearly
obtain the same graph.

Section 3.

PROOF OF THEOREM 3.2. First we define the solution space S(M) ofM by

S(M) := {(e,x) ∈ E ×X : x= f(x,e)} .

This is a measurable set, since S(M) = h−1(∆), where h : E ×X →X ×X is the mea-
surable mapping defined by h(e,x) = (x,f(x,e)) and ∆ is the set defined by {(x,x) : x ∈
X}, which is measurable since X is Hausdorff. Note that

A := prE(S(M)) = {e ∈ E : ∃x ∈X s.t. x= f(x,e)} ,
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is an analytic set because the projection prE : X ×E→ E is a measurable mapping between
standard measurable spaces (Lemma F.3).

Suppose that (1) holds, that is, M has a solution. Then there exists a pair of random
variables (E,X) : Ω→ E ×X such that X = f(X,E) P-a.s.. Note that

{ω ∈Ω :X(ω) = f
(
X(ω),E(ω)

)
} ⊆ {ω ∈Ω : ∃x ∈X s.t. x= f

(
x,E(ω)

)
}

⊆E−1
(
{e ∈ E : ∃x ∈X s.t. x= f(x,e)}

)
=E−1(A).

By Lemma F.6, A is PE-measurable because it is analytic, and we can write A = B ∪̇N
with B⊆ E measurable and N a PE-null set. Hence E−1(A) =E−1(B)∪E−1(N ) where
E−1(N ) is a P-null set. Therefore,

E−1(B)⊇ {ω ∈Ω :X(ω) = f
(
X(ω),E(ω)

)
} \E−1(N )

which implies that P(E−1(B)) = 1. Hence, E \A is a PE -null set. In other words, for PE -
almost every e ∈ E the structural equations x= f(x,e) have a solution x ∈X , that is, (2)
holds.

Suppose that (2) holds. Then E \ prE(S(M)) is a PE -null set. By application of the
measurable selection theorem F.8, there exists a measurable g : E → X such that for PE -
almost all e ∈ E , g(e) = f(g(e),e). Hence, there exists a measurable mapping g : E →X
such that for PE -almost every e ∈ E and for all x ∈X

x= g(e) =⇒ x= f(x,e) ,

which we call property (A). Let f̃ : E ×X →X be the causal mechanism of a structurally
minimal SCM that is equivalent toM (see Proposition 2.11). In particular, for any ε\pa(I) ∈
E\pa(I), we have that f̃(x,e) = f̃(x,epa(I),ε\pa(I)) for all x ∈X and all e ∈ E . This means
that we may also consider f̃ as a mapping f̃ : X × Epa(I)→X . By applying Lemma F.10
to the canonical projection prEpa(I) : E→ Epa(I) and using the equivalence of f and f̃ , we
obtain that for PEpa(I) -almost all epa(I) ∈ Epa(I) there exists x ∈X with x= f̃(x,epa(I)).
By applying the implication (2) =⇒ (A) to Epa(I) and f̃ , we conclude the existence of
a measurable g : Epa(I)→X such that for PEpa(I) -almost all epa(I) ∈ Epa(I), g(epa(I)) =

f̃(g(epa(I)),epa(I)). Once more using Lemma F.10, we obtain that for PE -almost all e ∈ E ,
g(epa(I)) = f(g(epa(I)),e). In other words, (3) holds.

Lastly, suppose that (3) holds, that is there exists a measurable solution function g :
Epa(I) → X . Then the measurable mappings E : E → E and X : E → X , defined by
E(e) := e and X(e) := g(epa(I)), respectively, define a pair of random variables (X,E)
such that X = f(X,E) holds a.s. and hence (X,E) is a solution. Hence (1) holds.

PROOF OF PROPOSITION 3.4. Let f̃ : E ×X →X be the causal mechanism of a struc-
turally minimal SCM M̃ that is equivalent toM (see Proposition 2.11). For a subset O ⊆ I
consider the induced subgraph Ga(M)O of the augmented graph Ga(M) on O. Then the
acyclicity of Ga(M) implies that the induced subgraph Ga(M)O is acyclic, and hence there
exists a topological ordering on the nodes O. We can substitute the components f̃i of the
causal mechanism f̃ for i ∈ O into each other along this topological ordering. This gives
a measurable solution function gO : X pa(O)\O × Epa(O)→XO for M̃, and hence for M.
It is clear from the acyclic structure that this mapping gO is independent of the choice of
the topological ordering and is the only solution function forM. Therefore, M̃ is uniquely
solvable w.r.t. O, and so isM.
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PROOF OF PROPOSITION 3.7. This follows immediately from Definitions 2.7 and 3.3.

PROOF OF THEOREM 3.6. Suppose that (1) holds. By Proposition B.1 there exists a mea-
surable solution function gO : X pa(O)\O × Epa(O) → XO for M w.r.t. O. Then for PE -
almost every e ∈ E and for all x\O ∈X \O we have that gO(xpa(O)\O,epa(O)) is a solution
of xO = fO(x,e). Hence, because of (1), for PE -almost every e ∈ E and for all x\O ∈X \O
we have that xO = fO(x,e) implies xO = gO(xpa(O)\O,epa(O)). Thus,M is uniquely solv-
able w.r.t. O, that is, (2) holds.

Suppose that (2) holds. Let gO : X pa(O)\O × Epa(O) → XO be a measurable solution
function forM w.r.t. O. Then, for PE -almost every e ∈ E and for all x ∈X

xO = gO(xpa(O)\O,epa(O)) ⇐⇒ xO = fO(x,e) .

This implies (1).
For the last statement, assume that M is uniquely solvable. Let g : Epa(I) → X be a

measurable solution function. Then there exists a measurable set B ⊆ E with PE(B) = 1
and for all e ∈B,

∀x ∈X : x= f(x,e) =⇒ x= g(epa(I)).

The existence of a solution forM follows directly from Theorem 3.2. Each solution (X,E) :
Ω→X × E ofM satisfies X(ω) = f(X(ω),E(ω)) P-a.s.. In addition, it satisfies E(ω) ∈
B P-a.s., since P ◦ E−1 = PE . Hence, it satisfies X(ω) = g(E(ω)pa(I)) P-a.s.. Thus for
every solution (X,E) the associated observational distribution is the push-forward of PE
under g ◦ prpa(I).

PROOF OF PROPOSITION 3.8. Let gO : X pa(O)\O × Epa(O)→XO be a measurable so-
lution function for M w.r.t. O. Then the mapping g̃O∪I : Epa(O) → XO∪I defined by
g̃O∪I(epa(O)) := (gO(ξpa(O)\O,epa(O)),ξI) is a measurable solution function for the SCM
Mdo(I,ξI) w.r.t. O ∪ I . IfM is (uniquely) solvable w.r.t. O, then it follows thatMdo(I,ξI) is
(uniquely) solvable w.r.t. O ∪ I .

PROOF OF PROPOSITION 3.10. It suffices to show that solvability ofM w.r.t. O implies
ancestral solvability w.r.t.O. Solvability ofM w.r.t.O implies that there exists a measurable
mapping gO : X pa(O)\O × Epa(O)→ XO such that for PE -almost every e ∈ E and for all
x ∈X

xO = gO(xpa(O)\O,epa(O)) =⇒ xO = fO(x,e) .

Let f̃ : E × X → X be the causal mechanism of a structurally minimal SCM M̃ that is
equivalent to M (see Proposition 2.11). Let P := anG(M)O(A) for some A ⊆ O. Then for
PE -almost every e ∈ E and for all x ∈X{
xP = (gO)P(xpa(O)\O,epa(O))

xO\P = (gO)O\P(xpa(O)\O,epa(O))
=⇒

{
xP = f̃P(xpa(P),epa(P))

xO\P = f̃O\P(xpa(O\P),epa(O\P)) .

Since pa(P) \ P ⊆ pa(O) \O, we have that in particular for PE -almost every e ∈ E and for
all x ∈X

xP = (gO)P(xpa(O)\O,epa(O)) =⇒ xP = f̃P(xpa(P),epa(P)) .

This implies that the mapping (gO)P cannot depend on elements different from pa(P).
Moreover, it follows from the definition of P that (pa(O) \ O) ∩ pa(P) = pa(P) \ P and
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thus we have pa(O) \ O = (pa(P) \ P) ∪ (pa(O) \ (O ∪ pa(P))). Now, pick an element
x̂pa(O)\(O∪pa(P)) ∈ X pa(O)\(O∪pa(P)) and define the mapping g̃P : X pa(P)\P × Epa(P) →
XP by

g̃P(xpa(P)\P ,epa(P)) := (gO)P(xpa(P)\P , x̂pa(O)\(O∪pa(P)),epa(O)) .

Then, for PE -almost every e ∈ E and for all x ∈X

xP = g̃P(xpa(P)\P ,epa(P)) ⇐⇒ xP = (gO)P(xpa(O)\O,epa(O)) .

Together this gives that for PE -almost every e ∈ E and for all x ∈X

xP = g̃P(xpa(P)\P ,epa(P)) =⇒ xP = f̃P(xpa(P),epa(P)) .

which is equivalent to the statement thatM is solvable w.r.t. anG(M)O(A).

Section 4.

LEMMA E.1. Let M be an SCM that is uniquely solvable w.r.t. two subsets A,B ⊆ I
that satisfy A ⊆ B and pa(A) \ A ⊆ pa(B) \ B. Let gA : X pa(A)\A × Epa(A) → XA and
gB : X pa(B)\B × Epa(B) → XB be measurable solution functions for M w.r.t. A and B,
respectively. Then for PE -almost every e ∈ E and for all x ∈X

gA(xpa(A)\A,epa(A)) = (gB)A(xpa(B)\B,epa(B)) .

PROOF. Without loss of generality, we assume thatM is structurally minimal (see Propo-
sition 2.11). Let Ē ⊆ E be a measurable set with PE(Ē) = 1 such that for all e ∈ Ē for all
x ∈X :

xA = gA(xpa(A)\A,epa(A)) ⇐⇒ xA = fA(xpa(A),epa(A))

and

xB = gB(xpa(B)\B,epa(B)) ⇐⇒ xB = fB(xpa(B),epa(B)) .

Now let e ∈ Ē and let xA∪pa(B)\B ∈XA∪pa(B)\B . Then

xA = (gB)A(xpa(B)\B,epa(B))

=⇒

{
xA = (gB)A(xpa(B)\B,epa(B))

∃xB\A ∈XB\A : xB\A = (gB)B\A(xpa(B)\B,epa(B))

=⇒ ∃xB\A ∈XB\A : xB = gB(xpa(B)\B,epa(B))

=⇒ ∃xB\A ∈XB\A : xB = fB(xpa(B),epa(B))

=⇒ ∃xB\A ∈XB\A : xA = fA(xpa(A),epa(A))

=⇒ xA = fA(xpa(A),epa(A))

=⇒ xA = gA(xpa(A)\A,epa(A)) ,

where the exists-quantifier could be omitted because the expression it binds to does not de-
pend on xB\A (from the assumptions it follows that (A∪ pa(A))∩ (B \A) = ∅). Hence, for
all e ∈ Ē and all xA∪pa(B)\B ∈XA∪pa(B)\B

xA = (gB)A(xpa(B)\B,epa(B)) =⇒ xA = gA(xpa(A)\A,epa(A)) .
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Hence, for all e ∈ Ē and all xA∪pa(B)\B ∈XA∪pa(B)\B

(gB)A(xpa(B)\B,epa(B)) = gA(xpa(A)\A,epa(A)) .

Since this expression does not depend on x(B\A)∪I\(B∪pa(B)), from Lemma F.11.(2) we
conclude that for all e ∈ Ē and all x ∈X

(gB)A(xpa(B)\B,epa(B)) = gA(xpa(A)\A,epa(A)) .

LEMMA E.2. An SCMM is observationally equivalent toMtwin w.r.t. O⊆ I .

PROOF. Let (X,E) be a solution ofM, then ((X,X),E) is a solution ofMtwin. Con-
versely, let ((X,X ′),E) be a solution ofMtwin, then (X,E) is a solution ofM.

PROOF OF PROPOSITION 4.6. First we show that equivalence implies counterfactual
equivalence w.r.t. O. The twin operation preserves the equivalence relation on SCMs and
since equivalent SCMs are interventionally equivalent w.r.t. every subset, the two equivalent
twin SCMs have to be interventionally equivalent w.r.t. O ∪O′ for every O ⊆ I with O′ the
copy of O in I ′.

Now, letM and M̃ be counterfactually equivalent w.r.t. O. ThenMtwin and M̃twin are
interventionally equivalent w.r.t. O ∪O′. Thus for I ⊆ O, I ′ ⊆ O′ the copy of I and ξI′ =
ξI ∈ X I , Mtwin

do(I∪I′,ξI∪I′ ) and M̃twin
do(I∪I′,ξI∪I′ ) are observationally equivalent w.r.t. O ∪ O′.

In particular, they are observationally equivalent w.r.t. O. From Proposition 2.21 we have
thatMtwin

do(I∪I′,ξI∪I′ ) = (Mdo(I,ξI))
twin and M̃twin

do(I∪I′,ξI∪I′ ) = (M̃do(I,ξI))
twin, and together

with Lemma E.2 this gives thatMdo(I,ξI) and M̃do(I,ξI) are observationally equivalent w.r.t.
O.

Section 5.

LEMMA E.3. LetM be an SCM. Let B ⊆ I and A⊆ I ∪J such that (pa(B) \B)⊆A
and B ∩A = ∅. Assume that gB : XA × EA→XB is a measurable function such that for
PE -almost every e ∈ E and for all x ∈X

xB = fB(xpa(B),epa(B)) ⇐⇒ xB = gB(xA,eA) .

ThenM is uniquely solvable w.r.t. B.

PROOF. Assume that for PE -almost every e ∈ E and for all x ∈X

xB = fB(xpa(B),epa(B)) ⇐⇒ xB = gB(xA,eA) .

Let C := A \ (pa(B) \B), then by Lemma F.11.(7) we have that there exists êC ∈ EC and
x̂C ∈XC such that for PEJ\C -almost every eJ\C ∈ EJ\C and for all xI\C ∈X I\C

xB = fB(xpa(B),epa(B)) ⇐⇒ xB = gB(xpa(B)\B, x̂C ,epa(B), êC) .

Defining the mapping hB : X pa(B)\B × Epa(B)→XB by

hB(xpa(B)\B,epa(B)) := gB(xpa(B)\B, x̂C ,epa(B), êC) ,

where we picked êC ∈ EC and x̂C ∈XC such that the above equivalence holds, and applying
Lemma F.11.(6) we get that for PE -almost every e ∈ E and for all x ∈X

xB = fB(xpa(B),epa(B)) ⇐⇒ xB = hB(xpa(B)\B,epa(B))

holds. Thus,M is uniquely solvable w.r.t. B.
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PROOF OF PROPOSITION 5.4. From unique solvability of M w.r.t. L1 it follows that
there exists a mapping gL1

: X pa(L1)\(L1) × Epa(L1)→XL1
such that for PE -almost every

e ∈ E and for all x ∈X

xL1
= gL1

(xpa(L1)\L1
,epa(L1)) ⇐⇒ xL1

= fL1
(x,e) .

Let p̂a denotes the parents in Ga(Mmarg(L1)). Note that p̂a(L2) \L2 ⊆ pa(L1 ∪L2) \ (L1 ∪
L2). Let f̃ denote the marginal causal mechanism of a structurally minimal SCM that is
equivalent to the marginalizationMmarg(L1) constructed from gL1

(see Proposition 2.11).
=⇒ : If Mmarg(L1) is uniquely solvable w.r.t. L2, then there exists a mapping g̃L2

:
X p̂a(L2)\L2

×E p̂a(L2)→XL2
such that for PE -almost every e ∈ E and for all xI\L1

∈X I\L1

xL2
= g̃L2

(xp̂a(L2)\L2
,ep̂a(L2)) ⇐⇒ xL2

= fL2
(gL1

(xpa(L1)\L1
,epa(L1)),xI\L1

,e) .

Define the mapping h : X pa(L1∪L2)\(L1∪L2) × Epa(L1∪L2)→XL1∪L2
by

(hL1
,hL2

)(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2)) :=(
gL1

(
(g̃L2

)pa(L1)(xp̂a(L2)\L2
,ep̂a(L2)),xpa(L1)\(L1∪L2),epa(L1)

)
, g̃L2

(xp̂a(L2)\L2
,ep̂a(L2))

)
.

Then for PE -almost every e ∈ E and for all x ∈X{
xL1

= fL1
(x,e)

xL2
= fL2

(x,e)

⇐⇒

{
xL1

= gL1
(xpa(L1)\L1

,epa(L1))

xL2
= fL2

(x,e)

⇐⇒

{
xL1

= gL1
(xpa(L1)\L1

,epa(L1))

xL2
= fL2

(gL1
(xpa(L1)\L1

,epa(L1)),xI\L1
,e)

⇐⇒

{
xL1

= gL1
(xpa(L1)\L1

,epa(L1))

xL2
= g̃L2

(xp̂a(L2)\L2
,ep̂a(L2))

⇐⇒

{
xL1

= gL1

(
(g̃L2

)pa(L1)(xp̂a(L2)\L2
,ep̂a(L2)),xpa(L1)\(L1∪L2),epa(L1)

)
xL2

= g̃L2
(xp̂a(L2)\L2

,ep̂a(L2))

⇐⇒

{
xL1

= hL1
(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2))

xL2
= hL2

(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2)) ,

where in the first equivalence we used unique solvability w.r.t. L1 of M, in the second we
used substitution, in the third we used unique solvability w.r.t. L2 ofMmarg(L1), in the fourth
we used again substitution and in the last equivalence we used the definition of h. From this
we conclude thatM is uniquely solvable w.r.t. L1 ∪ L2. Hence, by definition it follows that
marg(L2) ◦marg(L1)(M) = marg(L1 ∪L2)(M).
⇐= : If M is uniquely solvable w.r.t. L1 ∪ L2, then there exists a mapping h :

X pa(L1∪L2)\(L1∪L2)×EL1∪L2
→XL1∪L2

such that for PE -almost every e ∈ E for all x ∈X

xL1∪L2
= h(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2)) ⇐⇒ xL1∪L2

= fL1∪L2
(x,e) .
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Then, for PE -almost every e ∈ E for all x ∈X{
xL1

= hL1
(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2))

xL2
= hL2

(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2))

⇐⇒

{
xL1

= fL1
(x,e)

xL2
= fL2

(x,e)

⇐⇒

{
xL1

= gL1
(xpa(L1)\L1

,epa(L1))

xL2
= fL2

(x,e)

⇐⇒

{
xL1

= gL1
(xpa(L1)\L1

,epa(L1))

xL2
= fL2

(gL1
(xpa(L1)\L1

,epa(L1)),xI\L1
,e)

⇐⇒

{
xL1

= gL1
(xpa(L1)\L1

,epa(L1))

xL2
= f̃L2

(xp̂a(L2),ep̂a(L2)) .

This gives for PE -almost every e ∈ E for all xI\L1
∈X I\L1

xL2
= hL2

(xpa(L1∪L2)\(L1∪L2),epa(L1∪L2))

⇐⇒ xL2
= f̃L2

(xp̂a(L2),ep̂a(L2)) .

Now apply Lemma E.3 to conclude thatMmarg(L1) is uniquely solvable w.r.t. L2.

PROOF OF PROPOSITION 5.5. The commutation relation with the perfect intervention
follows straightforwardly from the definitions of perfect intervention and marginalization
and the fact that ifM is uniquely solvable w.r.t. L, thenMdo(I,ξI) is also uniquely solvable
w.r.t. L, since the structural equations for the variables L are the same forM andMdo(I,ξI).

The commutation relation with the twin operation follows straightforwardly from the def-
inition of the twin operation and marginalization and the fact that ifM is uniquely solvable
w.r.t. L, then twin(M) is uniquely solvable w.r.t. L∪L′, where L′ is the copy of L in I ′.

LEMMA E.4. Given an SCMM and a subset L ⊆ I such thatM is uniquely solvable
w.r.t. L. ThenM and marg(L)(M) are observationally equivalent w.r.t. I \ L.

PROOF. Let O := I \ L. From unique solvability w.r.t. L it follows that for PE -almost
every e ∈ E and for all x ∈X{

xL = fL(x,e)

xO = fO(x,e)

⇐⇒

{
xL = gL(xpa(L)\L,epa(L))

xO = fO(gL(xpa(L)\L,epa(L)),xO,e)

⇐⇒

{
xL = gL(xpa(L)\L,epa(L))

xO = f̃(xO,e) ,

where f̃ is the marginal causal mechanism of Mmarg(L) constructed from a measurable
solution function gL : X pa(L)\L × Epa(L)→XL forM w.r.t. L. Hence, a solution (X,E)

of M satisfies XO = f̃(XO,E) a.s.. Conversely, if (X̃O,E) is a solution of the marginal
SCM Mmarg(L) then with X̃L := gL(X̃pa(L)\L,Epa(L)), the random variables (X,E) :=

(X̃O,X̃L,E) are a solution ofM.
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PROOF OF THEOREM 5.6. The observational equivalence follows from Lemma E.4. Us-
ing both Lemma E.4 and Proposition 5.5 we can prove the interventional equivalence.
Observe that from Proposition 5.5 we know that for a subset I ⊆ I \ L and a value
ξI ∈ X I , (marg(L) ◦ do(I,ξI))(M) exists. By Lemma E.4 we know that do(I,ξI)(M)
and (marg(L) ◦ do(I,ξI))(M) are observationally equivalent w.r.t. O and hence by apply-
ing again Proposition 5.5, do(I,ξI)(M) and (do(I,ξ) ◦marg(L))(M) are observationally
equivalent w.r.t. O. This implies that M and marg(L)(M) are interventionally equivalent
w.r.t. O. Lastly, we need to show that twin(M) and (twin ◦ marg(L))(M) are interven-
tionally equivalent w.r.t. (I ∪ I ′) \ (L ∪ L′), where L′ is the copy of L in I ′. From Propo-
sition 5.5 (twin ◦marg(L))(M) is equivalent to (marg(L ∪ L′) ◦ twin)(M) and since we
proved that (marg(L ∪ L′) ◦ twin)(M) and twin(M) are interventionally equivalent w.r.t.
(I ∪ I ′) \ (L∪L′) the result follows.

PROOF OF PROPOSITION 5.8. A similar proof as for Theorem 1 in [7] works.

PROOF OF PROPOSITION 5.9. First we prove the commutation relation of the perfect in-
tervention. Observe that applying the do(I) operation to the latent projection marg(L)(G)
removes all the incoming edges on the nodes I . Such an incoming edge at a node in I in
marg(L)(G) corresponds to a path in G that points to that node. But since do(I)(G) is just G
with all the incoming edges on I removed, the graph (marg(L) ◦ do(I))(G) also has all the
incoming edges on the nodes I removed.

Next, we will prove the commutation relation of the twin operation. We will denote the
copy in I ′ of any node i ∈ I by i′, that is, I ′ = {i′ : i ∈ I}. The edges in (twin(I \ L) ◦
marg(L))(G) can be partitioned into three cases:

v→w v ∈ J ∪ I \ L,w ∈ J ∪ I \ L, v→w ∈marg(L)(G) ,

v→w′ v ∈ J ,w ∈ I \ L, v→w ∈marg(L)(G) ,

v′→w′ v ∈ I \ L,w ∈ I \ L, v→w ∈marg(L)(G) ,

where J := V \ I .
Note that in twin(I)(G), there are no directed edges of the form v′ → w by definition.

Therefore, the edges in (marg(L∪L′) ◦ twin(I))(G) can be partitioned into three cases:
v→w v ∈ J ∪ I \ L,w ∈ J ∪ I \ L, v→ `1→ · · · → `n→w ∈ twin(I)(G) ,

v→w′ v ∈ J ,w ∈ I \ L, v→ `′1→ · · · → `′n→w′ ∈ twin(I)(G) ,

v′→w′ v ∈ I \ L,w ∈ I \ L, v′→ `′1→ · · · → `′n→w′ ∈ twin(I)(G) ,

where all `1, . . . , `n ∈ L and `′1, . . . , `
′
n ∈ L′. Thus, the non-endpoint nodes on the directed

paths in twin(I)(G) must either all lie in L or in L′. With the definition of twin(I)(G) we
can rewrite this as follows:

v→w v ∈ J ∪ I \ L,w ∈ J ∪ I \ L, v→ `1→ · · · → `n→w ∈ G ,
v→w′ v ∈ J ,w ∈ I \ L, v→ `1→ · · · → `n→w ∈ G ,
v′→w′ v ∈ I \ L,w ∈ I \ L, v→ `1→ · · · → `n→w ∈ G ,

where all intermediate `1, . . . , `n must lie in L. This corresponds exactly with the edges in
(twin(I \ L) ◦marg(L))(G).

PROOF OF PROPOSITION 5.11. Without loss of generality, we assume that M is struc-
turally minimal (see Proposition 2.11). Let gL be a measurable solution function forM w.r.t.
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L and denote by Mmarg(L) the marginal SCM constructed from gL. For j ∈ I \ L, define
Aj := anG(M)L(pa(j) ∩ L)⊆ L and let g̃Aj be a measurable solution function forM w.r.t.
Aj . Because Aj ⊆ L and pa(Aj) \ Aj ⊆ pa(L) \ L, by Lemma E.1, for PE -almost every
e ∈ E and for all x ∈X

(gL)Aj (xpa(L)\L,epa(L)) = g̃Aj (xpa(Aj)\Aj ,epa(Aj)) .

Therefore, the component f̃j of the marginal causal mechanism f̃ ofMmarg(L) satisfies for
PE -almost every e ∈ E and for all x ∈X

f̃j(xI\L,e) := fj
(
(gL)pa(j)(xpa(L)\L,epa(L)),xpa(j)\L,epa(j)

)
= fj

(
(g̃Aj )pa(j)∩L(xpa(Aj)\Aj ,epa(Aj)),xpa(j)\L,epa(j)

)
.

Hence, the endogenous parents of j inMmarg(L) are a subset of
(
(pa(Aj) \Aj) ∪ (pa(j) \

L)
)
∩ I and the exogenous parents of j inMmarg(L) are a subset of (pa(Aj)∪ pa(j))∩J .

Hence, all parents of j inMmarg(L) are a subset of those k ∈ (I \L)∪J such that there exists
a path k→ `1→ · · · → `n→ j ∈ Ga(M) for n ≥ 0 and `1, . . . , `n ∈ L. Therefore, the aug-
mented graph Ga

(
marg(L)(M)

)
is a subgraph of the latent projection marg(L)

(
Ga(M)

)
.

Hence,

G
(
marg(L)(M)

)
= marg(J )

(
Ga
(
marg(L)(M)

))
⊆marg(J )

(
marg(L)

(
Ga(M)

))
= marg(L)

(
marg(J )

(
Ga(M)

))
= marg(L)

(
G(M)

)
and we conclude that also the graph G

(
marg(L)(M)

)
is a subgraph of the latent projection

marg(L)
(
G(M)

)
.

Section 6.

PROOF OF THEOREM 6.3. This follows directly from Theorems A.7 and A.21.

Section 7.

PROOF OF PROPOSITION 7.1. We define M̃ :=Mdo(I,ξI), p̃a := paGa(M̃) and A :=

anG(M̃)\i
(j). Suppose that i → j /∈ marg(I \ O)(G(M)) and assume that the two in-

duced distributions do not coincide. Because i→ j /∈ marg(I \ O)(G(M)) it follows that
(p̃a(A) \ A)∩ I = ∅. Let now g̃A : E p̃a(A)→XA be a measurable solution function for M̃
w.r.t. A, that is, we have for PE -almost every e ∈ E and for all x ∈X

xA = f̃A(x,e) ⇐⇒ xA = g̃A(ep̃a(A)) ,

where f̃ is the ausal mechanism of M̃. Because i /∈ A and j ∈ A, it follows that for the
intervened model (Mdo(I,ξI))do({i},ξi) the marginal solution Xj is also a marginal solution
of (Mdo(I,ξI))do({i},ξ̃i) and vice versa, which is in contradiction with the assumption.

PROOF OF PROPOSITION 7.2. Let’s define M̃ := Mdo(I,ξI), p̃a := paGa(M̃), Ai :=

anG(M̃)(i) andA\ij := anG(M̃)\i
(j). Suppose that there does not exist a bidirected edge i↔ j
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in the latent projection marg(I \O)(G(M)). Because i↔ j /∈marg(I \O)(G(M̃)), where
here M̃ is the intervened modelMdo(I,ξI), we have that anGa(M̃)\j

(i)∩anGa(M̃)\i
(j)∩J =

∅. From j /∈ anG(M̃)(i) it follows that anG(M̃)\j
(i) = anG(M̃)(i), and hence anGa(M̃)(i) ∩

anGa(M̃)\i
(j) ∩ J = ∅. Observe that p̃a(Ai) ⊆ anGa(M̃)(i) and p̃a(A\ij ) ⊆ anGa(M̃)\i

(j) ∪
{i}, and thus p̃a(Ai)∩ p̃a(A\ij )∩J = ∅. Let gAi : E p̃a(Ai)→XAi be a measurable solution
function for M̃ w.r.t. Ai, that is, we have for PE -almost every e ∈ E and for all x ∈X

xAi = f̃Ai(x,e) ⇐⇒ xAi = gAi(ep̃a(Ai)) ,

where f̃ is the intervened causal mechanism of M̃. Because p̃a(Ai)∩ p̃a(A\ij )∩J = ∅ and
i ∈Ai, we have that Xi⊥⊥Ep̃a(A\ij ) for every solution (X,E) of M̃.

Assume for the moment that i ∈ p̃a(A\ij )\A\ij , then (p̃a(A\ij )\A\ij )∩I = {i}. Let gA\ij :

Xi × E p̃a(A\ij )→XA\ij be a measurable solution function for M̃ w.r.t. A\ij , that is, we have
for PE -almost every e ∈ E and for all x ∈X

xA\ij
= f̃A\ij

(x,e) ⇐⇒ xA\ij
= gA\ij

(xi,ep̃a(A\ij )) .

For every measurable set Bj ⊆Xj there exists a version of the regular conditional probability
PMdo(I,ξI )

(Xj ∈ B |Xi = ξi) such that for every value ξi ∈ Xi it satisfies

PMdo(I,ξI )

(
Xj ∈ Bj |Xi = ξi

)
= PM̃

(
Xj ∈ Bj |Xi = ξi

)
= PM̃

(
(gA\ij

)j(Xi,Ep̃a(A\ij )) ∈ Bj |Xi = ξi
)

= PM̃
(
(gA\ij

)j(ξi,Ep̃a(A\ij )) ∈ Bj |Xi = ξi
)

= PM̃
(
(gA\ij

)j(ξi,Ep̃a(A\ij )) ∈ Bj
)

= PM̃do({i},ξi)

(
(gA\ij

)j(Xi,Ep̃a(A\ij )) ∈ Bj
)

= PM̃do({i},ξi)

(
Xj ∈ Bj

)
= P(

Mdo(I,ξI )

)
do({i},ξi)

(
Xj ∈ Bj

)
,

where we used Xi⊥⊥Ep̃a(A\ij ) in the fourth equality.

If we assume i /∈ p̃a(A\ij ) \ A\ij instead of i ∈ pa(A\ij ) \ A\ij , then we similarly arrive at
the same conclusion.

Section 8.

PROOF OF PROPOSITION 8.2. We first show that the class of simple SCMs is closed un-
der marginalization. Take two disjoint subsets L1 and L2 in I . Then, it suffices to show that
Mmarg(L1) is uniquely solvable w.r.t. L2. This follows directly from Proposition 5.4.

To show that the class of simple SCMs is closed under perfect intervention. Let M be
a simple SCM, O ⊆ I , I ⊆ I and ξI ∈ X I . Define O1 := O ∩ I and O2 := O \ I , then
O =O1 ∪O2. Note that pa(O2) \ O2 = (pa(O2) \ (O2 ∪ I)) ∪ (pa(O2) ∩ I) and pa(O2) \
(O2 ∪ I) ⊆ pa(O) \ O. Let gO2

: X pa(O2)\O2
× Epa(O2)→ XO2

be a measurable solution
function forM w.r.t. O2. The mapping g̃O : X pa(O)\O × Epa(O)→XO defined by{

(g̃O)O1
(xpa(O)\O,epa(O)) := ξO1

(g̃O)O2
(xpa(O)\O,epa(O)) := gO2

(xpa(O2)\(O2∪I),ξpa(O2)∩I ,epa(O2))
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is a measurable solution function for Mdo(I,ξI) w.r.t. O, and it is clear that Mdo(I,ξI) is
uniquely solvable w.r.t. O.

Next, we show that the class of simple SCMs is closed under the twin operation. Let
Õ ⊆ I ∪ I ′. Take O1 = Õ ∩ I , O′2 = Õ ∩ I ′ and O2 the original copy of O′2 in I . Let
gO1

: X pa(O1)\O1
× Epa(O1) → XO1

and gO2
: X pa(O2)\O2

× Epa(O2) → XO2
be measur-

able solution functions for M w.r.t. O1 and O2, respectively. Define now the mapping
hÕ : X p̃a(Õ)\Õ × E p̃a(Õ)→X Õ by

(hÕ)Õ∩I(xp̃a(Õ)\Õ,ep̃a(Õ)) := gO1
(xp̃a(O1)\O1

,ep̃a(O1))

(hÕ)Õ∩I′(xp̃a(Õ)\Õ,ep̃a(Õ)) := gO2
(xp̃a(O′2)\O′2 ,ep̃a(O′2)) ,

where we define p̃a := paGa(Mtwin) as the parents w.r.t. the twin graph Ga(Mtwin). Then by
construction this mapping hÕ is a measurable solution function forMtwin w.r.t. Õ, and it is
clear thatMtwin is uniquely solvable w.r.t. Õ.

Lastly, it follows that the observational and all the intervened models of M and Mtwin

are uniquely solvable. From Theorem 3.6 we conclude thatM induces unique observational,
interventional and counterfactual distributions.

PROOF OF COROLLARY 8.3. This follows from Corollary A.22.

APPENDIX F: MEASURABLE SELECTION THEOREMS

In this appendix, we derive some lemmas and state two measurable selection theorems that
are used in several proofs in Appendix E. First, we introduce the measure theoretic notation
and terminology needed to understand the results (see [12] for more details).

DEFINITION F.1 (Standard measurable space). A measurable space (X ,Σ) is a standard
measurable space if it is isomorphic to (Y ,B(Y)), where Y is a Polish space, that is, a
separable completely metrizable space,8 and B(Y) are the Borel subsets of Y , that is, the σ-
algebra generated by the open sets in Y . A measure space (X ,Σ,µ) is a standard probability
space if (X ,Σ) is a standard measurable space and µ is a probability measure.

Examples of standard measurable spaces are the open and closed subsets of Rd, and the
finite sets with the usual complete metric. If we say that X is a standard measurable space,
then we implicitly assume that there exists a σ-algebra Σ such that (X ,Σ) is a standard
measurable space. Similarly, if we say that X is a standard probability space with probability
measure PX , then we implicitly assume that there exists a σ-algebra Σ such that (X ,Σ,PX )
is a standard probability space.

DEFINITION F.2 (Analytic set). Let X be a Polish space. A set A⊆X is called analytic
if there exist a Polish space Y and a continuous mapping f : Y→X with f(Y) = A.

8A metrizable space is a topological space X for which there exists a metric d such that (X , d) is a metric
space and induces the topology on X . For a metric space (X , d), a Cauchy sequence is a sequence (xn)n∈N of
elements of X such that for every ε > 0 there exists an N ∈N such that for all natural numbers p, q >N we have
d(xn, xm) < ε. We call (X , d) complete if every Cauchy sequence has a limit in X . A completely metrizable
space is a topological space X for which there exists a metric d such that (X , d) is a complete metric space that
induces the topology on X . A topological space X is called separable if it contains a countable dense subset,
that is, there exists a sequence (xn)n∈N of elements in X such that every nonempty open subset of X contains
at least one element of the sequence. A separable completely metrizable space is called a Polish space (see [5]
and [12] for more details).
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LEMMA F.3. Let X and Y be standard measurable spaces and f : X →Y a measurable
mapping. Then

1. every measurable set A⊆X is analytic;
2. if the subsets A ⊆ X and Ã ⊆ Y are analytic, then the sets f(A) and f−1(Ã) are

analytic.

PROOF. From Proposition 13.7 in [12] it follows that every measurable set A ⊆ X is
analytic. From Proposition 14.4.(ii) in [12] it follows that the image and the preimage of an
analytic set is an analytic set.

DEFINITION F.4 (µ-measurability). Let (X ,Σ,µ) be a measure space. A set E ⊆X is
called a µ-null set if there exists a A ∈Σ with E ⊆A and µ(A) = 0. We denote the class of
µ-null sets by N , and we denote the σ-algebra generated by Σ∪N by Σ̄, and its members
are called the µ-measurable sets. Note that each member of Σ̄ is of the form A ∪ E with
A ∈Σ and E ∈N . The measure µ is extended to a measure µ̄ on Σ̄, by µ̄(A∪E) =µ(A)
for every A ∈Σ and E ∈N , and is called its completion. A mapping f : X →Y between
measurable spaces is called µ-measurable if the inverse image f−1(C) of every measurable
set C ⊆Y is µ-measurable.

DEFINITION F.5 (Universal measurability). Let (X ,Σ) be a standard measurable space.
A set A ⊆X is called universally measurable if it is µ-measurable for every σ-finite mea-
sure9 µ on X (i.e., in particular every probability measure). A mapping f : X →Y between
standard measurable spaces is universally measurable if it is µ-measurable for every σ-finite
measure µ.

LEMMA F.6. Let E be a standard probability space with probability measure PE and
A⊆ E an analytic set. Then A is PE -measurable and there exist measurable sets S,T ⊆ E
such that S ⊆A⊆ T and PE(S) = P̄E(A) = PE(T ), where P̄E is the completion of PE .

PROOF. Let A⊆ E be an analytic set. Since every analytic set in a standard measurable
space is a universally measurable set (see Theorem 21.10 in [12]), we know that A is a
universally measurable set, and hence it is in particular a PE -measurable set. Thus, there exist
a measurable set S ⊆ E and a PE -null set C ⊆ E such that A = S ∪C and P̄E(A) = PE(S),
where P̄E is the completion of PE . Moreover, there exists a measurable set C̃ ⊆ E such that
C ⊆ C̃ and PE(C̃) = 0. Let T := S ∪ C̃, then A⊆ T and PE(T ) = PE(S).

LEMMA F.7. Let f : X →Y be a µ-measurable mapping. If Y is countably generated,
then there exists a measurable mapping g : X →Y such that f(x) = g(x) holds µ-a.e..

PROOF. Let the σ-algebra of Y be generated by the countable generating set {Cn}n∈N.
The µ-measurable set f−1(Cn) = An ∪ En for some An ∈Σ and some En ∈N and hence
there is some En ⊆ Bn ∈ Σ such that µ(Bn) = 0. Let B̂ = ∪n∈NBn, Ân = An \ B̂ and
Â = ∪n∈NÂn, then µ(B̂) = 0, Â and B̂ are disjoint and X = Â ∪ B̂. Now define the
mapping g : X →Y by

g(x) :=

{
f(x) if x ∈ Â,
y0 otherwise,

9A measure µ on a measurable space (X ,Σ) is called σ-finite if X = ∪n∈NAn, with An ∈Σ, µ(An)<
∞.
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where for y0 we can take an arbitrary point in Y . This mapping g is measurable since for
each generator Cn we have

g−1(Cn) =

{
Ân if y0 /∈ Cn,
Ân ∪ B̂ otherwise.

is in Σ. Moreover, f(x) = g(x) µ-almost everywhere.

With this result at hand we can now prove the first measurable selection theorem.

THEOREM F.8 (Measurable selection theorem). Let E be a standard probability space
with probability measure PE , X a standard measurable space and S ⊆ E ×X a measurable
set such that E \prE(S) is a PE -null set, where prE : E ×X → E is the projection mapping
on E . Then there exists a measurable mapping g : E →X such that (e,g(e)) ∈ S for PE -
almost every e ∈ E .

PROOF. Take the subset Ê := E \ B, for some measurable set B ⊇ E \ prE(S) and
PE(B) = 0, and note that Ê is a standard measurable space (see Corollary 13.4 in [12]) and
Ê ⊆ prE(S). Let Ŝ = S ∩ (Ê ×X ). Because the set Ŝ is measurable, it is in particular ana-
lytic (see Lemma F.3). It follows by the Jankov-von Neumann Theorem (see Theorem 18.8 or
29.9 in [12]) that Ŝ has a universally measurable uniformizing function, that is, there exists
a universally measurable mapping ĝ : Ê →X such that for all e ∈ Ê , (e, ĝ(e)) ∈ Ŝ . Hence,
in particular, it is PE

∣∣
Ê -measurable, where PE

∣∣
Ê is the restriction of PE to Ê .

Now define the mapping g∗ : E→X by

g∗(e) :=

{
ĝ(e) if e ∈ Ê
x0 otherwise,

where for x0 we can take an arbitrary point in X . Then this mapping g∗ is PE -measurable.
To see this, take any measurable set C ⊆X , then

g∗−1(C) =

{
ĝ−1(C) if x0 /∈ C
ĝ−1(C)∪B otherwise.

Because ĝ−1(C) is PE
∣∣
Ê -measurable it is also PE -measurable and thus g∗−1(C) is PE -

measurable.
By Lemma F.7 and the fact that standard measurable spaces are countably generated (see

Proposition 12.1 in [12]), we prove the existence of a measurable mapping g : E →X such
that g∗ = g PE -a.e. and thus it satisfies (e,g(e)) ∈S for PE -almost every e ∈ E .

This theorem rests on the assumption that the standard measurable space E has a probabil-
ity measure PE . If this space becomes the product space Y×E , for some standard measurable
space Y where only the space E has a probability measure, then in general this theorem does
not hold anymore. However, if we assume in addition that the fibers of S in Y are σ-compact
for PE -almost every e ∈ E and for all x ∈X , then we can prove a second measurable selec-
tion theorem. A topological space is σ-compact if it is the union of countably many compact
subspaces. For example, all countable discrete spaces, every interval of the real line, and
moreover all the Euclidean spaces are σ-compact spaces.
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THEOREM F.9 (Second measurable selection theorem). Let E be a standard probability
space with probability measure PE , X and Y standard measurable spaces and S ⊆ X ×
E ×Y a measurable set such that E \Kσ is a PE -null set, where

Kσ := {e ∈ E : ∀x ∈X (S(x,e) is nonempty and σ-compact)} ,

with S(x,e) denoting the fiber over (x,e), that is

S(x,e) := {y ∈Y : (x,e,y) ∈S} .

Then there exists a measurable mapping g : X ×E→Y such that for PE -almost every e ∈ E
and for all x ∈X we have (x,e,g(x,e)) ∈S .

PROOF. Take the subset Ê := E \B, for some measurable set B⊇ E \Kσ and PE(B) = 0.
Note that Ê is a standard measurable space, Ê ⊆Kσ and Ŝ = S∩(X ×Ê×Y) is measurable.
By assumption, for each (x,e) ∈ X × Ê the fiber Ŝ(x,e) is nonempty and σ-compact and
hence by applying the Theorem of Arsenin-Kunugui (see Theorem 35.46 in [12]) it follows
that the set Ŝ has a measurable uniformizing function, that is, there exists a measurable
mapping ĝ : X × Ê →Y such that for all (x,e) ∈X × Ê , (x,e, ĝ(x,e)) ∈ Ŝ . Now define
the mapping g : X × E→Y by

g(x,e) :=

{
ĝ(x,e) if e ∈ Ê
y0 otherwise,

where for y0 we can take an arbitrary point in Y . This mapping g inherits the measurability
from ĝ and it satisfies for PE -almost every e ∈ E and for all x ∈ X that (x,e,g(x,e)) ∈
S .

The next two lemmas provide some useful properties for the “for PE -almost every e ∈ E”
quantifier.

LEMMA F.10. Let φ : E → Ẽ be a measurable map between two standard measurable
spaces. Let PE be a probability measure on E and let PẼ = PE ◦ φ−1 be its push-forward
under φ. Let P̃ : Ẽ → {0,1} be a property, that is, a (measurable) boolean-valued function
on Ẽ . Then the property P = P̃ ◦ φ on E holds PE -a.e. if and only if the property P̃ holds
PẼ -a.e..

PROOF. Assume the property P = P̃ ◦ φ holds PE -a.e., then C = {e ∈ E : P (e) = 1}
contains a measurable set C∗ with PE -measure 1, that is, C∗ ⊆ C and PE(C∗) = 1. By
Lemma F.3, φ(C∗) is analytic. By Lemma F.6, there exist measurable sets A,B such that
A⊆ φ(C∗)⊆B and PẼ(A) = PẼ(B). Because φ is measurable, φ−1(A) and φ−1(B) are
both measurable. Also, φ−1(A)⊆ φ−1(φ(C∗))⊆ φ−1(B). As C∗ ⊆ φ−1(φ(C∗)), we must
have that PE(φ−1(B)) ≥ PE(C∗) = 1. Hence PẼ(A) = PẼ(B) = 1. Note that as C∗ ⊆ C,
A⊆ φ(C∗)⊆ φ(C)⊆ {ẽ ∈ Ẽ : P̃ (ẽ) = 1}. Hence the set C̃ := {ẽ ∈ Ẽ : P̃ (ẽ) = 1} contains
a measurable set of PẼ -measure 1, in other words, P̃ holds PẼ -a.s..

The converse is easier to prove. Suppose C̃ = {ẽ ∈ Ẽ : P̃ (ẽ) = 1} contains a measurable
set C̃∗ with PẼ -measure 1, that is, C̃∗ ⊆ C̃ and PẼ(C̃∗) = 1. Because φ is measurable, the
set φ−1(C̃∗) is measurable and PE(φ−1(C̃∗)) = 1, and furthermore, φ−1(C̃∗) ⊆ φ−1(C̃) =
C.
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LEMMA F.11 (Some properties for the for-almost-every quantifier). Let X = X × X̃
and E = E × Ẽ be products of nonempty standard measurable spaces and PE = PE × PẼ be
the product measure of probability measures PE and PẼ on E and Ẽ , respectively. Denote
by “∨∼e” the quantifier “for PE -almost every e ∈ E” and by “∀x” the quantifier “for all
x ∈ X”, and similarly for their components, for example, “∨∼e” for “for PE -almost every
e ∈ E” and “∀x” for “for all x ∈ X”. Then we have the following properties:

1. ∨∼e : P (e) =⇒ ∃e : P (e) (similarly to ∀x : P (x) =⇒ ∃x : P (x));
2. ∨∼e : P (e) ⇐⇒ ∨∼e : P (e) (similarly to ∀x : P (x) ⇐⇒ ∀x : P (x));
3. ∃x∨∼e : P (x, e) =⇒ ∨∼e∃x : P (x, e) (similarly to ∃x∀e : P (x, e) =⇒ ∀e∃x : P (x, e));
4. ∨∼e∀x : P (x, e) =⇒ ∀x∨∼e : P (x, e) (similarly to ∀e∀x : P (x, e) =⇒ ∀x∀e : P (x, e));
5. ∨∼e : P (e) =⇒ ∃ẽ∨∼e : P (e) (similarly to ∀x : P (x) =⇒ ∃x̃∀x : P (x));
6. ∨∼e∀x : P (x, e) ⇐⇒ ∨∼e∀x : P (x, e);
7. ∨∼e∀x : P (x,e) =⇒ ∃ẽ∃x̃∨∼e∀x : P (x,e),

where P denotes a property, that is, a measurable boolean-valued function, on the corre-
sponding measurable spaces and we write e and x for (e, ẽ) and (x, x̃), respectively.

PROOF. We only prove the statements that may not be immediately obvious.
Property 2. Let prE : E → E be the projection mapping on E . Then by Lemma F.10 we

have

∨∼e : P (e) ⇐⇒ ∨∼e : P ◦ prE(e) ⇐⇒ ∨∼e : P (e) .

Property 4: We have

∨∼e∀x : P (x, e)

=⇒ ∃PE -null set N ∀e ∈ E \N ∀x : P (x, e)

=⇒ ∃PE -null set N ∀x∀e ∈ E \N : P (x, e)

=⇒ ∀x∃PE -null set N ∀e ∈ E \N : P (x, e)

=⇒ ∀x∨∼e : P (x, e) .

Property 5: Let N be a measurable PE -null set such that P (e) holds for all e ∈ E \N .
Define for ẽ ∈ Ẽ the set Nẽ := {e ∈ E : (e, ẽ) ∈N}. Note that the sets Nẽ are measurable.
From Fubini’s theorem it follows that for PẼ -almost every ẽ ∈ Ẽ we have PE(Nẽ) = 0. That
is, there exists a measurable PẼ -null set Ñ such that PE(Nẽ) = 0 for all ẽ ∈ Ẽ \ Ñ . Hence,
there exists ẽ ∈ Ẽ \ Ñ such that PE(Nẽ) = 0; for all e ∈ E \Nẽ, P (e) then holds. This means
∃ẽ∨∼e : P (e).

Property 7: We have

∨∼e∀x : P (x,e) =⇒ ∃ẽ∨∼e∀x : P (x,e) =⇒ ∃ẽ∨∼e∀x̃∀x : P (x,e)

=⇒ ∃ẽ∀x̃∨∼e∀x : P (x,e) =⇒ ∃ẽ∃x̃∨∼e∀x : P (x,e) ,

where in the first equivalence we used Property 5, in the third equivalence we used Property 4
and in the last equivalence we used Property 1.

REFERENCES

[1] BLOM, T., BONGERS, S. and MOOIJ, J. M. (2019). Beyond Structural Causal Models: Causal Constraints
Models. In Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence (UAI-19)
(R. P. ADAMS and V. GOGATE, eds.). AUAI Press.

[2] BLOM, T., VAN DIEPEN, M. M. and MOOIJ, J. M. (2020). Conditional Independences and Causal Relations
implied by Sets of Equations. arXiv.org preprint arXiv:2007.07183 [cs.AI].



SUPPLEMENT TO “FOUNDATIONS OF STRUCTURAL CAUSAL MODELS” 45

[3] BOLLEN, K. A. (1989). Structural Equations with Latent Variables. John Wiley & Sons, New York, USA.
[4] BONGERS, S., BLOM, T. and MOOIJ, J. M. (2021). Causal Modeling of Dynamical Systems. arXiv.org

preprint arXiv:1803.08784v3 [cs.AI].
[5] COHN, D. L. (2013). Measure Theory, 2nd ed. Birkhäuser, Boston, USA.
[6] DAWID, A. P. (2002). Influence Diagrams for Causal Modelling and Inference. International Statistical

Review 70 161–189.
[7] EVANS, R. J. (2016). Graphs for Margins of Bayesian Networks. Scandinavian Journal of Statistics 43

625–648.
[8] FORRÉ, P. and MOOIJ, J. M. (2017). Markov Properties for Graphical Models with Cycles and Latent

Variables. arXiv.org preprint arXiv:1710.08775 [math.ST].
[9] GEIGER, D. (1990). Graphoids: A Qualitative Framework for Probabilistic Inference Technical Report No.

R-142, Computer Science Department, University of California, Los Angeles, USA.
[10] GOLUB, G. and KAHAN, W. (1965). Calculating the Singular Values and Pseudo-Inverse of a Matrix.

Journal of the Society for Industrial and Applied Mathematics: Series B, Numerical Analysis 2 205–
224.

[11] HYTTINEN, A., EBERHARDT, F. and HOYER, P. O. (2012). Learning Linear Cyclic Causal Models with
Latent Variables. Journal of Machine Learning Research 13 3387–3439.

[12] KECHRIS, A. S. (1995). Classical Descriptive Set Theory. Graduate Texts in Mathematics 156. Springer-
Verlag, New York, USA.

[13] KOSTER, J. T. A. (1996). Markov Properties of Nonrecursive Causal Models. The Annals of Statistics 24
2148–2177.

[14] KOSTER, J. T. A. (1999). On the Validity of the Markov Interpretation of Path Diagrams of Gaussian
Structural Equations Systems with Correlated Errors. Scandinavian Journal of Statistics 26 413–431.

[15] LAURITZEN, S. L. (1996). Graphical Models. Oxford Statistical Science Series 17. Clarendon Press, Ox-
ford.

[16] LAURITZEN, S. L., DAWID, A. P., LARSEN, B. N. and LEIMER, H. G. (1990). Independence Properties
of Directed Markov Fields. Networks 20 491–505.

[17] MEEK, C. (1995). Strong Completeness and Faithfulness in Bayesian Networks. In Proceedings of the
Eleventh Conference on Uncertainty in Artificial Intelligence (UAI-95) (P. BESNARD and S. HANKS,
eds.) 411–418. Morgan Kaufmann, San Francisco, CA, USA.

[18] NEAL, R. M. (2000). On Deducing Conditional Independence from d-Separation in Causal Graphs with
Feedback. Journal of Artificial Intelligence Research 12 87–91.

[19] PEARL, J. (1985). A Constraint Propagation Approach to Probabilistic Reasoning. In Proceedings of the
First Conference on Uncertainty in Artificial Intelligence (UAI-85) (L. KANAL and J. LEMMER, eds.)
31–42. AUAI Press, Corvallis, Oregon, USA.

[20] PEARL, J. (2009). Causality: Models, Reasoning, and Inference, 2nd ed. Cambridge University Press, New
York, USA.

[21] PEARL, J. and DECHTER, R. (1996). Identifying Independence in Causal Graphs with Feedback. In Pro-
ceedings of the Twelfth Conference on Uncertainty in Artificial Intelligence (UAI-96) (E. HORVITZ

and F. JENSEN, eds.) 420–426. Morgan Kaufmann, San Francisco, CA, USA.
[22] PENROSE, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the Cambridge

Philosophical Society 51 406–413.
[23] RICHARDSON, T. (2003). Markov Properties for Acyclic Directed Mixed Graphs. Scandinavian Journal of

Statistics 30 145–157.
[24] RICHARDSON, T. S. (1996). Models of Feedback: Interpretation and Discovery, PhD thesis, Carnegie Mel-

lon University.
[25] RICHARDSON, T. S. and ROBINS, J. M. (2014). ACE Bounds; SEMs with Equilibrium Conditions. Statis-

tical Science 29 363-366.
[26] SPIRTES, P. (1994). Conditional Independence in Directed Cyclic Graphical Models for Feedback Technical

Report No. CMU-PHIL-54, Carnegie Mellon University.
[27] SPIRTES, P. (1995). Directed Cyclic Graphical Representations of Feedback Models. In Proceedings of the

Eleventh Conference on Uncertainty in Artificial Intelligence (UAI-95) (P. BESNARD and S. HANKS,
eds.) 499–506. Morgan Kaufmann, San Francisco, CA, USA.

[28] SPIRTES, P., GLYMOUR, C. and SCHEINES, R. (2000). Causation, Prediction, and Search, 2nd ed. Adaptive
Computation and Machine Learning. MIT Press, Cambridge, Massachusetts.

[29] SPIRTES, P., RICHARDSON, T., MEEK, C., SCHEINES, R. and GLYMOUR, C. (1998). Using Path Diagrams
as a Structural Equation Modelling Tool. Sociological Methods & Research 27 182–225.


	Causal graphical models
	Directed (mixed) graphs
	Markov properties
	The directed global Markov property
	The general directed global Markov property

	Modular SCMs
	Definition of a modular SCM
	Relation between SCMs and modular SCMs

	Overview of causal graphical models

	(Unique) solvability properties
	Sufficient condition for solvability w.r.t. subsets
	(Unique) solvability w.r.t. strict super- and subsets
	(Unique) solvability w.r.t. unions and intersections

	Linear SCMs
	Examples
	SCMs as equilibrium models
	Additional examples
	Section 2
	Section 3
	Section 4
	Section 5
	Section 7


	Proofs
	Proofs of the appendices
	Appendix A
	Appendix B
	Appendix C

	Proofs of the main text
	Section 2
	Section 3
	Section 4
	Section 5
	Section 6
	Section 7
	Section 8


	Measurable selection theorems
	References

