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Random differential equations (RDEs) provide a natu-
ral extension of ordinary differential equations to the
stochastic setting and have been widely accepted as an
important mathematical tool in modeling and analysis
of numerous processes in physics, finance, biochemistry
and engineering systems (Bunke, 1972; Soong, 1973;
Sobczyk, 1991; Rupp and Neckel, 2013). The processes
described by these systems are not only of stochastic
nature, but are also of causal nature, in the sense that
the random differential equations encode how the time-
varying internal or external processes change other pro-
cesses over time. Although in principle random differ-
ential equations could be used for modeling causal rela-
tionships between such processes, infering such causal
models from data is often difficult. A significant prac-
tical drawback of this modeling class is that obtaining
time series data with sufficiently high temporal resolu-
tion is often costly, impractical or even impossible. An-
other issue is that if one has only access to a subset of
the system’s processes, for example due to practical lim-
itations on the measurability of some of the processes,
then in general there does not have to exist an RDE on
this subset of processes that could be estimated. A simi-
lar issue arises when the RDE contains exogenous latent
confounding processes.

Structural causal models (SCMs), also known as struc-
tural equation models, are another well-studied causal
modeling tool and have been widely applied in the genet-
ics, economics, engineering and social sciences (Pearl,
2009; Spirtes et al., 2000; Bollen, 1989). One of the ad-
vantages of SCMs over other causal modeling tools is
that they have the ability to deal with cyclic causal re-
lationships (Spirtes, 1995; Hyttinen et al., 2012; Mooij
etal.,2011; Forré and Mooij, 2017; Bongers et al., 2018).
In particular, recent work has shown how one can apply
the (general) directed global Markov property (Forré and
Mooij, 2017), how one can deal with marginalization and
how one can causally interpret these models in the cyclic
setting (Bongers et al., 2018).
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Over the years, several attempts have been made to in-
terpret these structural causal models that include cyclic
causal relationships. They can be derived from an under-
lying discrete-time or continuous-time dynamical system
(Fisher, 1970; Iwasaki and Simon, 1994; Dash, 2005;
Lacerda et al., 2008; Mooij et al., 2013; Rubenstein et al.,
2018). All these methods assume that the dynamical
system under consideration converges to a single static
equilibrium, with the exception of the analysis by Fisher
(1970), who assumes that observations are time averages
of a dynamical system, and the recent work of Ruben-
stein et al. (2018), who has shown that dynamic asymp-
totic behaviour of ordinary differential equations can be
captured by dynamic structural causal models. This sin-
gle static equilibrium assumption gives rise to a more
parsimonious description of the causal relationships of
the equilibrium solutions and ignores the complicated
but decaying transient dynamics of the dynamical sys-
tem. The assumption that the system has to equilibrate
to a single static equilibrium is rather strong and limits
the applicability of the theory, as many dynamical sys-
tems have multiple equilibrium solutions.

In this work, we relax this condition and capture, under
certain equilibrium convergence assumptions, every ran-
dom equilibrium solution of the RDE in an SCM. Con-
versely, we show that under suitable conditions, every so-
lution of the SCM corresponds to a sample-path solution
of the RDE. Intuitively, the idea is that in the limit when
time tends to infinity the random differential equations
converge exactly to the structural equations of the SCM,
and hence in this limit every sample-path solution of the
RDE is encoded as a solution of the structural equations.
This is illustrated for the basic enzyme reaction in Fig-
ure 1. There we show how the randomness of the initial
conditions evolve over time and is captured in the con-
structed SCM at equilibrium. Moreover, we show that
this construction is compatible with interventions under
similar equilibrium convergence assumptions, as is illus-
trated at the bottom part of Figure 1. We like to stress



that our construction automatically captures the stochas-
tic behavior of the RDE in the associated SCM. It can
deal with randomness in the initial conditions, the coeffi-
cients and via the random inhomogenous part (captured
as noise in the SCM), thereby significantly extending the
work by Mooij et al. (2013) who only considers the de-
terministic setting.

The advantage of SCMs over RDE:s is that by not mod-
eling the transient random dynamics of the RDE, one
arrives at a more compact representation for learning
and prediction purposes of random systems that have
reached equilibrium. Another advantage is that the equi-
librium solutions of the RDE can be studied by statis-
tical tools applicable to SCMs. For example, one can
marginalize over a subset of the system’s variables and
get an even more parsimonious representation that pre-
serves the causal semantics (Bongers et al., 2018). This
is illustrated in Figure 2 for the example of a damped
coupled harmonic oscillator, where we marginalize over
the momentum variables. Moreover, we can apply the
(general) directed global Markov property to the equilib-
rium solutions of the SCM by using d-separation (and
o-separation) (Bongers et al., 2018). This is also illus-
trated in Figure 2, where we perform d- and o-separation
on the equilibrium solutions of the intervened model and
see that the position variables ()1 and 5 are indepen-
dent given the position variable (5 which we held fixed.
This enables the study of stochastic and causal behav-
ior of the equilibrium solutions of the RDE in terms of
SCMs and hence this sheds some new light on the con-
cept of causality as expressed within the framework of
structural causal models. Yet another advantage is that it
is easier to deal with confounders within the framework
of SCMs, as we only need to model the equilibrium dis-
tribution of these confounders, and don’t need to model
their dynamics.

In summary, we built a bridge between the world of ran-
dom differential equations and the world of structural
causal models. This allows us to study a plethora of
physical and engineering systems subject to time-varying
random disturbances within the framework of structural
causal models. We naturally extend the work of Mooij
et al. (2013) to the stochastic setting, which allows us to
address both cycles and confounders. In particular, we
relaxed the condition that the dynamical system has to
equilibrate to a single static equilibrium, such that it can
deal with multiple equilibrium solutions, and show that
if an RDE is sufficiently regular all equilibrium sample-
path solutions of the RDE are described by the solutions
of the associated SCM, while preserving the causal se-
mantics.
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Figure 1: Example that illustrates how structural causal models can be used to describe the equilibrium solutions of
random differential equations (in this case, an enzyme reaction) and how these change under external interventions
(in this case, keeping the enzyme concentration I at a fixed value n). The diagram is commutative.
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Figure 2: Example that illustrates that the equilibrium solutions of the RDE (in this case, of a damped coupled
harmonic oscillator) can be studied by statistical tools applicable to SCMs (in this case, we first perform a marginal-
ization over the momentum variables, and in turn perform d- and o-separation on the intervened graph to conclude

that Q1 1L Qs5|Q3).
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